
RNMC: kinetic Monte Carlo implementations for
complex reaction networks

Laura Zichi1,2*, Daniel Barter³*, Eric Sivonxay³*, Evan Walter Clark Spotte-Smith1,4, Rohith Srinivaas
Mohanakrishnan1,4, Emory M. Chan⁵, Kristin Aslaug Persson4,5†, Samuel M. Blau³‡

* These authors contributed equally to this work.
† Corresponding author. Address: Department of Materials Science and Engineering, University of California -

Berkeley, CA, USA 94720. Email: kapersson@lbl.gov.
‡ Corresponding author. Address: Energy Storage and Distributed Resources, Lawrence Berkeley National Laboratory,

Berkeley, CA USA 94720. Email: smblau@lbl.gov.

¹Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 94720
²Department of Physics, University of Michigan - Ann Arbor, Ann Arbor, MI, USA 48109
³Energy Storage and Distributed Resources, Lawrence Berkeley National Laboratory, Berkeley, CA USA 94720
⁴Department of Materials Science and Engineering, University of California - Berkeley, CA, USA 94720
⁵Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 94720

Summary

Macroscopic chemical and physical phenomena are driven by microscopic interactions at the atomic
and molecular scales. In order to capture complex processes with high fidelity, simulation methods
that bridge disparate time and length scales are needed. While techniques like molecular dynamics
and ab initio simulations capture dynamics and reactivity at high resolution, they cannot be used
beyond relatively small length (hundreds to thousands of atoms) and time scales (picoseconds to
microseconds). Kinetic Monte Carlo (kMC) approaches overcome these limitations to bridge length
and time scales across several orders of magnitude while retaining relevant microscopic resolution,
making it a powerful and flexible tool.

Here, we present RNMC, an easy-to-use, modular, high-performance kMC simulation framework
that enables modeling of complex systems. RNMC consists of a core module defining the common
features of kMC algorithms, including an implementation of the Gillespie algorithm [1], input/
output operations leveraging SQLite databases, threading logic for parallel execution, and
dependency graphs for efficient event propensity updates. In addition, there are currently three
modules defining kMC implementations for different types of applications. The GMC (Gillespie Monte
Carlo) module enables simulations of reaction networks in a homogeneous (well-mixed)
environment. GMC is a basic tool that is appropriate for general simulations of solution-phase
chemistry. The NPMC (NanoParticle Monte Carlo) module enables simulation of dynamics in
nanoparticles with 3D statistical field theory and supports one- and two-site interactions. Finally, the
LGMC (Lattice Gillespie Monte Carlo) module is designed for simulations of multi-phase systems
(especially at solid-fluid interfaces) where chemical and electrochemical reactions can occur between
a lattice region and a homogeneous region. We have designed RNMC to be easily extensible, enabling
users to add additional kMC modules for other diverse chemical and physical systems.

Statement of need

Three are many existing kMC implementations, including several open source examples (e.g. the
Stochastic Parallel PARticle Kinetic Simulator or SPPARKS [2] and kmos [3]). RNMC began as a fork of
SPPARKS but differs in several important ways. First, because RNMC uses the widely supported
SQLite database engine for simulation inputs and outputs, it facilitates the automation of



simulations. Second, RNMC has a focus on modularity; it is designed such that users can quickly
develop new types of kMC simulations using a common core library.

The simulation modules already implemented in RNMC provide unique capabilities that are not
widely available in other open source codes. NPMC is specifically designed for 3D simulations of the
complex photophysical interaction networks in nanocrystals [4], particularly multi-domain
heterostructures whose optical properties cannot be calculated deterministically [5]. NPMC can be
used to simulate energy transfer interactions between dopants in nanoparticles, their radiative
transitions, and nonlinear processes such as upconversion [6] and photon avalanching [5]. LGMC is
also somewhat unique in that it can simulate multi-phase systems and electrochemical processes.
Simulations using LGMC can include a lattice region and a homogeneous solution region which can
interact via interfacial reactions. Electrochemcial reactions can be treated using Marcus theory [7] or
Butler-Volmer kinetics [8]. Because it allows for a dynamic lattice region, LGMC is also appropriate for
simulations of nucleation and growth, dissolution, precipitation, and related phenomena.

We have already used the GMC module in a number of prior works in applications related to Li-
ion and Mg-ion batteries [9–11]. We note that these simulations included tens of millions of
reactions, demonstrating that RNMC is able to scale to large and complex reaction networks. In
addition, we have used NPMC to perform Bayesian optimization of upconverting nanoparticles [12].

Code Availability

RNMC can be found on GitHub at https://github.com/BlauGroup/RNMC. Code documentation is
provided at https://blaugroup.github.io/RNMC/.
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