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Chemical reaction networks and 
opportunities for machine learning

Mingjian Wen    1,2, Evan Walter Clark Spotte-Smith    3,4, Samuel M. Blau    2, 
Matthew J. McDermott3,4, Aditi S. Krishnapriyan5,6,7 & Kristin A. Persson    4,8 

Chemical reaction networks (CRNs), defined by sets of species and possible 
reactions between them, are widely used to interrogate chemical systems. 
To capture increasingly complex phenomena, CRNs can be leveraged 
alongside data-driven methods and machine learning (ML). In this 
Perspective, we assess the diverse strategies available for CRN construction 
and analysis in pursuit of a wide range of scientific goals, discuss ML 
techniques currently being applied to CRNs and outline future CRN-ML 
approaches, presenting scientific and technical challenges to overcome.

Computational research occupies a key role in studies of chemical 
reactivity. In domains such as gas phase thermochemistry1,2, homoge-
neous3 and heterogeneous4,5 catalysis, electrochemistry6,7 and atmos-
pheric chemistry8,9, short-lived intermediate species can be difficult 
or impossible to detect via experimental spectroscopy10,11, making 
computational elucidation of reaction mechanisms critical to explain 
observed reaction outcomes and dynamics. Complex interactions 
in, for example, biochemical and cellular processes can often only be 
effectively disentangled using theoretical modeling12,13. Moreover, 
computational approaches are increasingly used to optimize indus-
trial chemical processes14 and enable novel materials syntheses15. 
Retrosynthesis planning tools in organic chemistry16,17—and, more 
recently, in materials chemistry18,19—can select from a combinatorial 
explosion of possible synthesis routes to maximize yield, minimize cost 
or minimize synthesis complexity, streamlining an otherwise extremely 
labor-intensive task.

Computational studies of reactivity are highly diverse, but a com-
mon approach is to interrogate chemical reaction networks (CRNs), 
sometimes called simply ‘reaction networks’ (Fig. 1). A CRN consists 
of a set of species, S, and a set of reactions, R, where each reaction is 
defined by its reactant and product species20. Analysis of CRNs usu-
ally requires the additional use of some properties, P, which further 
characterize the species and reactions in the network. For example, 
the reaction thermodynamics (such as reaction free energy, ΔG) and 
kinetics (for instance, free energy barrier, ΔG‡, or rate coefficient, k) are 
often used to determine which reaction pathways are likely to proceed, 

as well as the stable or metastable species under conditions of interest. 
Reaction conditions—for instance, the need for a reaction to proceed in 
a particular solvent or in the presence of a catalyst—can also be thought 
of as reaction properties. Some properties may be especially necessary 
or useful in specific domains. For example, reaction yield, chemical 
safety, and precursor or process cost are relevant descriptors in syn-
thetic applications. While the term ‘reaction network’ is overloaded 
in the literature, the general definition that we provide clarifies that 
even seemingly disparate examples, including reaction (hyper)graphs 
(Fig. 1a), energy diagrams (Fig. 1b), time dynamics (Fig. 1c) and ab initio 
surface explorations (Fig. 1d), are all fundamentally CRNs.

In recent years, there have been growing efforts to develop meth-
ods for the automatic exploration and characterization of CRNs using 
computational techniques21. At the same time, machine learning (ML) 
methods applied to chemical reactivity have exploded in popularity22. 
With CRNs being used to study ever-more complex chemical systems 
and increasing reliance on data-driven methods, integration between 
CRNs and ML (CRN-ML) is becoming both natural and critical. In this 
Perspective, we discuss developments in CRNs and ML, focusing on 
synergistic CRN-ML methods to explore reactive processes. We begin 
by surveying the literature, discussing various ways that CRNs can 
be constructed and analyzed. We then consider how ML can be used 
both as a data source or selection strategy for CRN inputs (meaning, 
S, R and P) and to aid CRN analysis yielding useful outputs (meaning, 
pathways, mechanisms and dynamics). Our discussion concludes by 
considering the rich opportunities for future development in CRN-ML, 
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CRN construction
Species and reactions. In perhaps the simplest method of CRN con-
struction, individual species and reactions are compiled in a bespoke or 
heuristic manner guided by chemical intuition and application-specific 
expertise23,24. This manual approach has the benefit that all species and 
reactions included in the network are presumed to be relevant to the 
process of interest. However, due to the human effort required and the 
reliance on intuition or comprehensive characterization, this strategy 
has limited predictive capacity and is constrained to small systems.

For studies of systems that cannot be easily probed experimen-
tally or that involve many species and reactions, automated methods 
are essential. These methods broadly fall into two categories: those 
involving potential energy surface (PES) exploration and those which 
systematically enumerate species and reactions based on predefined 
rules. PES exploration techniques25–27 use density functional theory 
(DFT) and related quantum chemical theories (for instance, wave-
function methods) to identify reactions proceeding from reactants of 
interest to various metastable intermediates and products. While PES 
exploration allows for the unbiased discovery of species and reactions 

and the challenges that the community must address before these 
opportunities can be realized.

Foundations of CRNs
At their core, CRNs are defined by a set of species S, a set of reactions R 
and, frequently, a set of properties P. However, this apparently simple 
structure obscures the many choices that must be made when con-
structing and/or analyzing CRNs. To construct a CRN (Fig. 2a), one 
must choose a strategy to construct the sets S, R and P, as well as a 
data source (mainly to populate P). The population of S, R and P can 
occur all at once or can be completed iteratively, adding batches of spe-
cies and reactions over several generations. Once networks have been 
constructed, they can be analyzed (Fig. 2b) to obtain varied insights 
ranging from the key species involved in a chemical process, reaction 
pathways from initial reactants to species of interest and system time 
dynamics. Here we highlight these choices to provide the foundation 
motivating later discussion of ML applications in CRNs, providing spe-
cific examples of different CRN construction and analysis approaches 
and their associated challenges or limitations.
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Fig. 1 | Diverse examples of CRNs. a, Illustration of a CRN for modeling the 
solid-state synthesis of Y2Mn2O7 within the C–Cl–Mn–Na–O–Y chemical system. 
Nodes represent reactants and products, edges represent chemical reactions, 
and color indicates the chemical subsystem of the reaction. b, A portion of an 
electrochemical CRN depicted as an energy diagram in which the dioxolylidene 
carbene can be formed by the reaction of a doubly reduced lithium ethylene 
carbonate Li+EC2− with CO2. c, Time dynamics of a combustion CRN, where 
lines depict simulated species concentration profiles, and realistic pathway 
competition and transient intermediate formation and consumption are 

observed. d, PES exploration during the construction of a catalytic CRN,  
where an initial reactant PES minimum (small purple circle, middle) is found to 
connect with three different product PES minima (small green, brown and red 
circles at the left, top and right of the PES, respectively) via three distinct paths 
that each traverse a different single reaction barrier. Panel a reproduced with 
permission from ref. 18 under a Creative Commons licence CC BY 4.0. Panels 
adapted with permission from: b, ref. 39 under a Creative Commons licence  
CC BY 4.0; c, ref. 149, Wiley; d, ref. 150, RSC.
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in complex systems, the high cost of ab initio quantum chemical cal-
culations makes such approaches useful for only relatively small mol-
ecules (meaning, less than 10 heavy atoms) or reactions on very short 
timescales (meaning, about 10 ps). Zhao and Savoie28 recently reduced 
the computational burden of PES exploration by combining DFT with 
cheaper semi-empirical methods in Yet Another Reaction Program 
(YARP). Despite its effectiveness for neutral organic molecules, even 
in the presence of catalytic surfaces29, we note that YARP is limited by 
its semi-empirical engine, which is not reliable for charged and open-
shell species30.

When PES exploration is not feasible (or when elementary reaction 
steps are not needed), it is most common to use a set of rules to define S 
and R. In domains where reaction mechanisms are well characterized, 
such as organic chemistry2,31,32, heterogeneous thermocatalysis33,34, 
prebiotic chemistry35,36 and biochemistry37,38, reaction templates are 
often used. Such templates prescribe how molecules containing certain 
structural motifs can transform into other species. By successively 
applying these templates, one simultaneously defines new reactions 
and species via the templated products.

Because reaction templates are typically designed for specific, 
well-studied chemical systems (for example, aqueous chemistry), 
they cannot be applied universally. When exploring a novel or exotic 
type of chemistry, key reaction mechanisms may not even have been 
identified yet. An alternative approach is to use filters, prescribing 

what should be excluded (rather than included) from the network given 
some initial sets of species and reactions. For example, a filter could be 
applied such that no reaction involving more than a certain number of 
bonds forming or breaking should be included3. Recently, Barter et al. 
devised High-Performance Reaction Generation (HiPRGen)39, which 
allows for user-defined species and reaction filters to construct CRNs 
following comprehensive reaction enumeration. A potential limitation 
of this filtering approach is that a set of species relevant to the chemical 
system of interest must be known at the time of network construction.

Like PES exploration, rule-based construction of S and R suffers 
from substantial drawbacks. As templates are, by definition, reactive 
motifs that have been previously observed, the use of templates biases 
CRNs towards well-studied chemistry and limits the ability of a CRN to 
discover novel reaction mechanisms. Templates are therefore inap-
propriate in domains where reaction mechanisms have not been thor-
oughly characterized. Even in domains where rule-based methods are 
appropriate and widely applied (for instance, organic synthesis), there 
is no guarantee that a reaction produced via a template or accepted 
through a set of chemical filters will actually occur. This is a substantial 
limitation, as even experts cannot easily predict which species and reac-
tions will prove to be exceptions to the rules40. Accordingly, caution is 
always required when constructing and employing a rule-based CRN.

Regardless of how a network has been constructed, whether in one 
shot or iteratively, using templates, filters or PES exploration, network 
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Fig. 2 | Construction and characterization of CRNs. a, CRN construction 
involves both a data selection strategy and a data source. Data selection 
strategies include bespoke or heuristic intuitive choice, quantum chemical PES 
exploration, ML or rule-based methods (meaning, templates and filters). Primary 
data sources include experiment, quantum chemistry and previous literature 

while secondary data sources derived from fit models include empirical relations 
(for example, group additivity for thermodynamics, linear scaling relations for 
kinetics) and ML models. b, Different methods of CRN characterization can yield 
useful insights into important species, reaction pathways and time dynamics.  
Ea, activation energy; ΔH, reaction enthalpy.
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incompleteness must be considered. In all but the most simple chemical 
systems, it is impractical to enumerate all possible chemical reactions; 
as a result, nearly every reported CRN is incomplete. However, the 
degree to which that incompleteness impacts the utility of the CRN 
depends on the chemical application and context. In retrosynthesis, 
CRN expansion is typically limited to the most promising reactions 
leading from a species of interest to some commercially available 
or easily synthesized precursors41. This incompleteness—ignoring 
irrelevant reactions that do not contribute to the desired synthesis—is 
known, acceptable and even advantageous to avoid scaling limitations. 
At the same time, there can also be unknown and undesirable forms of 
CRN incompleteness. If the set of templates used to generate a retrosyn-
thetic CRN is flawed, missing reactions could prevent the identification 
of any viable synthetic paths to a target or cause a longer or more costly 
path to be found instead of the true optimal path. Considering the 
dynamics of a complex system, the absence of a reaction could yield 
only a small deviation in species concentrations or could fundamentally 
change the reactive competition, perhaps leading to the predicted 
formation of entirely different products. To resolve these problems, 
methods to identify and/or quantify network incompleteness are 
needed. Techniques to selectively and minimally expand a CRN, aiming 
to make a network more complete as the application demands without 
dramatically increasing network size, are also essential.

Reactive properties. Often, the process of obtaining necessary proper-
ties (for example, ΔG) occurs concurrently with the selection of S and 
R, meaning that the choice of technique used for the construction of 
S, R and P are frequently coupled. However, this is not a requirement, 
and properties can also be obtained either before or after species and 
reaction selection.

Reactive properties can be sourced from experiments, quantum 
chemistry, literature sources or fit models (specifically, empirical 
relations or ML). For a sufficiently small network composed of well-
separated steps (meaning, not a reaction cascade), it may be possible 
to obtain experimental reaction energies or rates for all reactions. 
Recent advancements in high-throughput experimentation using a 
robotic platform42,43 offer an exceptional avenue to expand the use of 
experimentally obtained reaction properties in CRNs. Even if this is not 
possible, the experimental literature can still be used to provide useful 
approximations. For example, Wołos et al.36 surveyed the prebiotic 
chemistry literature to categorize different types of reaction based on 
their yields, ranging from trace (<3%) to high (≥80%).

When templates are used, it is often possible to apply fit models 
to approximate both thermodynamic and kinetic properties. Perhaps 
most famously, the Reaction Mechanism Generator (RMG)2 leverages 
Benson group additivity44 to estimate species thermodynamic proper-
ties (which are then used to calculate reaction thermodynamics) and 
combines databases of known rate coefficients with the Bell–Evans–
Polanyi linear scaling relation45,46 to predict reaction kinetics. Group 
additivity has also been exploited to predict reaction thermodynamics 
in metabolic networks47. This approach allows for the rapid prediction 
of rates for reactions following common organic mechanisms. When 
applied within sufficiently narrow families of molecules and reactions, 
group additivity and linear scaling relations can achieve admirable 
accuracy48,49. However, such trends frequently break down, even in 
relatively simple cases (for instance, single-atom chemisorption on 
transition-metal surfaces)50. Moreover, it is worth noting that the use 
of fit models relies on the availability of ample data on relevant species 
and reactions, meaning that such methods cannot be relied on for 
property prediction in sparsely explored domains.

Quantum chemistry is often applied to compute various proper-
ties of species and reactions, most importantly reaction (free) energies 
and energy barriers51. Importantly, DFT and related techniques can 
be employed even if PES exploration is not used to define S and R. For 
example, in their CRN to study solid-state materials synthesis pathways, 

McDermott et al.18 used a combinatorial, filter-based approach for 
reaction enumeration from a known set of material compositions; they 
then determined reaction free energies by referencing DFT-calculated 
formation energies in the Materials Project database52.

When relying on non-experimental sources for reaction proper-
ties, the role of the environment must be carefully taken into account. 
It is well established that the presence of interfaces can substantially 
affect reaction thermodynamics and kinetics53,54. In addition, many 
reactions are influenced by solvent effects55–57 and the concentration 
of reactive and innocent species in solution. Notably, pH can have a 
tremendous impact on aqueous reactivity58,59. Treating these effects 
using quantum chemistry, namely by including explicit interfaces, 
explicit solvation shells and/or by calculating reaction properties 
under different conditions (for example, in the presence of hydro-
nium or hydroxide ions, to simulate environments with different 
pH) can be computationally demanding. This therefore motivates 
efforts to develop low-cost methods to account for complex envi-
ronmental effects.

CRN characterization
One of the most common applications of CRNs is to answer the ques-
tion ‘How might this species form?’. This amounts to searching for 
reaction pathways from initial reactants to the species of interest. A 
common pathfinding approach is to represent a CRN as a graph and 
use shortest-path algorithms. When the CRN consists only of reactions 
of the type A ⟶ B, a simple directed graph with nodes representing 
species and edges representing reactions (generally in the direction 
reactants ⟶ products) will suffice3. Because edges in conventional 
graphs cannot link more than two nodes, however, they cannot be 
used to treat more complex reactions with multiple reactants and/or 
products (for instance, A + B ⟶ C + D). For a more general treatment, 
CRNs must be represented either as a bipartite directed graph with 
separate species and reaction nodes6,7,14 or as a directed hypergraph60, 
in which edges can connect an arbitrary number of nodes.

To use a shortest-path algorithm on a CRN (hyper)graph represen-
tation, one must define how the cost of a reaction is calculated. This cost 
function could be based on chemical parameters such as the reaction 
thermodynamics6,18, kinetics61 or yield36, or other properties such as 
the cost of reagents41. We note that choosing the cost function is one 
of the most challenging tasks in CRN pathfinding and there is no ideal 
universal cost function; instead, the choice of cost function depends 
on the available reaction descriptors and the application of interest. 
Common pathfinding algorithms are computationally expensive, 
scaling linearly or superlinearly with the size of the CRN62,63; they are, 
therefore, inappropriate for analysis of massive CRNs, such as those 
that emerge in organic retrosynthesis14. To overcome these scaling 
limitations, tailored search algorithms have been devised that can 
combine searches using multiple cost functions and employ a beam 
search with multiple priority queues to strategically limit the scope 
of the search and enhance robustness41. Stochastic methods, using 
either Monte Carlo tree search64–66 or the Gillespie algorithm39,67, offer 
another way to improve the over conventional shortest-path algorithms 
by efficiently sampling the reactive space with a focus on the most 
promising pathways.

When the species of interest in a network are not known a priori, 
it becomes important to identify key intermediates and products. A 
common approach is to interrogate the structure of the CRN. Like the 
Internet or social networks, CRNs often display a scale-free architec-
ture68; for instance, the network of all organic reactions is scale free69, 
as are some biochemical CRNs70. In a scale-free network, the fraction 
of species with k connections (equivalently, the fraction involved in 
k reactions, or in graph terms, the fraction of nodes with degree k) is 
described by a power law P(k) ≈ k−γ, where the exponent γ is a positive 
real number68. Such networks display ‘hubs’, key species with many 
connections that control reactive processes. By counting the degree of 
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each species in a CRN, Stocker et al.71 identified hub species in natural 
gas combustion; a similar approach was taken by Wołos et al. in their 
analysis of prebiotic synthesis36. Thinking beyond individual impor-
tant species, network structure has been used to identify a ‘core’ of 
organic chemistry72, that is, a relatively small set of S and R that can be 
used to effectively reach the vast majority of other species in a small 
number of transformations. When system dynamics are available (see 
next paragraph), it is also possible to define the natural products of 
a CRN—species that are created in abundance and are formed much 
more than they are consumed—which can guide pathfinding and enable 
mechanistic discovery39.

Reactive systems described by CRNs are dynamical, evolving over 
time as reactions occur. However, when reactive steps can be carried 
out in a controlled stepwise manner, reaction pathways fully prescribe 
how to transform reactants to end products, and many aspects of the 
dynamics can be safely abstracted away. In contrast, for applications 
involving reactive cascades where many reactions occur simultane-
ously and the individual steps of a chemical process cannot be easily 
separated (for example, via purification), such abstractions are insuffi-
cient. Rather, it is often essential to directly study temporal dynamics to 
capture reactive competition and understand the ultimate product(s) 
of a cascade process73–75.

There are two main approaches to characterize the dynamics of 
a chemical system described by a CRN. In one, coupled rate equations 
are solved to determine the concentrations of species in S (ref. 76) or 
the probabilities of system states being occupied77 as functions of 
time. As a simple example, for a CRN with S = {A, B, C} and R defined by

A
k1⇌
k−1

B

B
k2⇌
k−2

C,
(1)

the changes in species concentrations can be expressed as the follow-
ing set of differential equations

d[A]
dt

= −k1[A] + k−1[B]

d[B]
dt

= k1[A] − k−1[B] − k2[B] + k−2[C]

d[C]
dt

= k2[B] − k−2[C]

(2)

where [A], [B] and [C] are the species concentrations, and kn and k−n 
represent forward and reverse reaction rate coefficients, respectively. 
As an alternative to using coupled rate equations, one can employ sto-
chastic methods such as kinetic Monte Carlo78. In these approaches, the 
system state is evolved one reaction at a time using random numbers 
weighted by reaction propensities (related to reaction rates)67. Both 
coupled differential equation methods and stochastic methods offer 
(in principle) exact solutions to the dynamics of a reactive system, 
although the algorithmic simplicity and the often comparably low cost 
of stochastic methods make them attractive for simulations involving 
vast numbers of species and reactions.

In many chemical applications, reaction rate coefficients often 
vary by many orders of magnitude. Rapid reactions cause species 
concentrations—and thus reaction rates—to change quickly relative 
to the timescales of interest (which will often be determined by more 
rare events or slow reactions), making it challenging to propagate CRN 
system dynamics either by solving coupled rate equations or using a 
stochastic approach (the dynamics are ‘stiff’79). Simulations on stiff 
systems frequently require small time steps to capture the phenomena 
being modeled. As many applications require solving CRN dynamics 
repeatedly (for instance, decision-making and parameter estimation), 
numerical approaches can be computationally inefficient and can even 
become intractable.

Posing further problems for dynamical CRN studies, kinetic data 
are often limited in both availability and quality. As with other reaction 
properties, rate coefficients can be obtained by experiment or simu-
lations (from calculated energy barriers), or could be derived using, 
for instance, scaling relations. In many domains, experimental rate 
coefficients are few (although high-throughput experiments could 
change this), meaning that computational methods are often relied 
on. Exceptional high-accuracy quantum chemical methods, such as 
coupled-cluster and multi-reference approaches, applied to study rela-
tively simple reactions (for example, small-molecule reactions in the 
gas phase) can predict rate coefficients within 5–10% of experimental 
values80. In general, however, the quantitative accuracy of calculated 
rate coefficients leaves much to be desired81.

Application of ML to CRNs
Modern ML methods have substantially expanded a chemist’s tool-
box, enabling data-driven modeling without relying heavily on expert 
analysis and chemical intuition. Combined with CRNs, ML methods 
have recently been applied to understand complex chemical systems. 
In this section, we discuss current applications and future opportuni-
ties of ML methods for CRN data selection, as a CRN data source and 
for CRN characterization, aiming to overcome the challenges laid out 
in the previous section.

ML for CRN data selection
Learning potential energy surfaces. A remarkable accomplishment in 
chemical ML is the development of surrogate ML interatomic potentials 
or force fields to approximate a PES. Different ML regression algorithms 
have been applied to develop interatomic potentials, including linear 
regression82,83, kernel methods84, neural networks (Fig. 3a)85–87 and graph 
neural networks88,89, among others. ML interatomic potentials can achieve 
a balance between accuracy and running speed, and thus have been widely 
applied to a number of systems, ranging from small molecules to crystals 
and biomolecules (see refs. 90,91 for recent topical reviews). Despite 
these successes, designing models to account for more diverse chemical 
space (for example, a system with dozens of atomic elements)92,93 and to 
incorporate more complex interactions (including electrostatics94,95, 
van der Waals forces96 and magnetic states97) is less resolved and still a 
challenging task. These are areas of active, ongoing research.

In the context of CRNs, ML interatomic potentials can be used in 
place of a quantum chemical PES to identify species, S, and reactions, 
R, in an exploratory fashion. For example, Zeng et al.98 performed 
reactive molecular dynamics simulations using an ML interatomic 
potential to study methane combustion, where reaction mechanisms 
were extracted via analysis of observed reactive events. The obtained 
methane combustion CRN from the extracted reactions was in excel-
lent agreement with experimental observations. The capacity for 
interatomic potentials to extrapolate outside of their training data, 
however, remains questionable, particularly for complex systems90, 
which calls into question their utility for predictive CRN construction 
via ML PES exploration for systems with poorly understood reactiv-
ity. For such systems, it may be more appropriate for ML interatomic 
potentials to be built on the fly and iteratively improved to accelerate 
the exploration of a quantum chemical PES. This approach has been 
demonstrated for molecular structure relaxation and transition state 
search in the GPMin (Gaussian process minimizer)99 and ML-NEB (ML 
nudged elastic band)100 methods, respectively.

Refining reaction properties. In the ‘Reactive properties’ section, we 
discussed how some reaction properties, particularly kinetic proper-
ties, are difficult to accurately predict, requiring the use of time-con-
suming experiments or costly computational methods. Systematically 
improving the quality of all reaction property data in a CRN (using 
experimental data instead of calculated data, or using a more advanced 
level of theory for calculations) might be prohibitively expensive.
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An alternative would be to leverage ML to quantify the uncertainty 
in each datum via Gaussian processes101 or Bayesian neural networks102. 
Data points with large uncertainty are considered less reliable and then 
selected for further analysis. For instance, this may involve calculat-
ing the properties of some species or reactions using DFT (Fig. 3b). 
In a study using heterogeneous catalysis CRN to investigate syngas 

formation on rhodium, Ulissi et al.4 employed a Gaussian process to 
predict adsorption energies, which was combined with simple linear 
scaling relations (similar to the Bell–Evans–Polanyi relation discussed 
in the ‘Reactive properties’ section) to determine rate-limiting reac-
tions to be more accurately calculated by DFT. Another approach, 
transfer learning, can also be used to refine reaction properties.  
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Fig. 3 | Applications of ML to the construction and analysis of CRNs. a, An 
ML interatomic potential model learns a PES, where the total potential energy 
Etotal of a system of n atoms is obtained as the sum of individual atomic energies 
Ei. The PES can be explored to select species and reactions for a CRN. b, A CRN 
can be iteratively built by analyzing reactions and their properties with high 
uncertainty and then incorporating the corresponding refined data into the 
CRN. c, Knowledge graph reasoning can be used to identify missing reactions 
within a CRN. For example, given that the embeddings (blue squares) of the 
green molecules (products) are similar and that those of the purple molecules 
(reactants) are also similar, it is likely that there is a missing reaction (dashed 
lines) in the CRN. White circles and solid lines: other molecules and reactions. 
d, NLP can extract species, reactions and properties from the literature to aid in 

CRN construction. e, Trained ML models can provide fast prediction of reaction 
properties. For example, a graph neural network can combine the atom and 
bond features of the reactant and product molecules and then map the updated 
features to the reaction energy. f, Physics-informed neural networks can help 
to solve differential equations (for example, equation (2)) to evolve a reactive 
system state over time or can learn the CRN and the form of its dynamical 
equations from observed reactive trajectories. g, Sparse learning approaches 
using regularization can be employed to identify the skeleton of a CRN by 
eliminating unimportant species and reactions (for example, the light gray 
species and reactions) without affecting the model outcome. The regularization 
can be achieved by adding an L1-norm term on reaction rates r to the loss 
function, with a Lagrangian multiplier λ to control the regularization strength.
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It first pretrains a model using low-quality but easily obtainable data 
(for example, from classical and/or semi-empirical quantum chemi-
cal calculations) and then fine-tunes the pretrained model on more 
limited high-quality data (experimental data or highly accurate DFT 
or wavefunction calculations). Transfer learning has already been 
widely applied to predict the structures of reaction transition states103, 
reaction energy barriers104 and rate coefficients105,106. However, to our 
knowledge, transfer learning has not been utilized to populate a CRN 
with reaction properties.

Addressing CRN incompleteness. After an initial CRN is constructed, 
it may be necessary to expand the network to address incompleteness 
(see also the ‘Species and reactions’ section). To maximize the effi-
ciency of network expansion, it is desirable to train a model to suggest 
what data should be included in the CRN while acquiring such data 
using experimental measurements, quantum chemical calculations 
or ML. In some applications, particularly synthesis planning, CRNs 
gradually expand, with new species and reactions added to progress 
towards a well-defined goal such as a set of commercially available pre-
cursors. This could be achieved by iteratively expanding the network 
on the head species node32, where one can determine which reactions 
to add by a cost function. In addition to the chemically informed cost 
functions discussed in the ‘CRN characterization’ section, ML models 
trained on large sets of literature reactions provide an alternative 
approach for cost function design40,107. Such models output a prob-
ability score for each compatible reaction and then select the most 
probable reaction for network expansion. However, ML models trained 
on only the chemical literature are not optimal because literature data-
sets are biased by the popularity of particular reactions108. This can be 
resolved by training on both literature data and expert-coded reaction 
rules, as demonstrated by the Grzybowski group16,108. As suggested by 
the recent work of Lan and An109, deep reinforcement learning, which 
trains an ‘agent’ to make decisions based on a learned ‘policy’ (a func-
tion aiming to maximize a reward based on an objective function), 
could provide yet another means to select the most promising spe-
cies and reactions to add to a network. Lan and An constructed their 
network describing ammonia synthesis on iron with no knowledge of 
reaction intermediates or mechanisms; however, if an existing CRN can 
be used to cheaply learn an initial policy, application to CRN expansion 
should be straightforward.

We anticipate that the ML CRN expansion can be further improved 
by using knowledge graphs. Knowledge graphs utilize graph-like data 
structures to store interlinked descriptions of entities (nodes) and 
their relations (edges)110,111. A common approach to using knowledge 
graphs is to generate embedding vectors of the species (nodes) and 
reactions (edges) while preserving their semantic meaning via scor-
ing functions. The embeddings could then be used to identify missing 
links between the species nodes, in other words, identifying missing 
reactions that are not present in the network (Fig. 3c). This approach 
provides a systematic method to address the network incompleteness 
problem. Knowledge graph embeddings can also be used to assist other 
CRN tasks, such as ranking the species in a CRN to find key hubs (see 
the ‘CRN characterization’ section), or predicting reaction properties 
(see the ‘Reaction property prediction’ section). The major benefit of 
learning on a CRN knowledge graph is that this makes it possible for a 
learning algorithm to explicitly take advantage of the structure of the 
entire reaction space, which is missing if learning on only individual 
reactions. Learning on CRN graphs, however, requires new metrics to 
reflect the semantic meaning in reactions, which we believe should be 
task specific and carefully designed by domain experts.

ML as a CRN data source
Natural language processing. The scientific literature contains a 
wealth of prior experimental/theoretical data that may be utilized 
as a data source for CRN construction. While manual ‘digitization’ of 

CRN data from literature sources is possible and has been performed 
(for instance, from the origin of life literature by Wołos et al.36), this 
human-guided process is labor intensive and is not easily scalable 
to other chemistry domains, such as inorganic materials synthesis. 
This challenge has already been addressed by ML methods through 
the development of natural language processing (NLP) models for 
text extraction, such as BERT (bidirectional encoder representations 
from transformers)112, GPT (generative pretrained transformer)113 
and models derived from these for application to scientific domains 
(for example, MatBERT114 for materials science text) (Fig. 3d). Several 
literature-derived CRN datasets have already been created using these 
NLP approaches. For example, Kononova et al.115 compiled an inorganic 
synthesis dataset consisting of over 4 million papers and over 188,000 
paragraphs describing experimentally performed syntheses, extract-
ing species, reactions and processing steps from each. Tshitoyan et al.116  
extracted species (together with other inorganic materials science 
vocabulary) from 3.3 million abstracts and generated word embed-
dings for them, which can be further leveraged for property prediction 
and reaction discovery. The Cronin group has designed not only an 
NLP-based tool (SynthReader)117 for extracting synthesis procedures 
from the literature, but also a ‘chemical programming language’ (the 
XDL format)118 for executing these steps on a robotic lab platform in a 
standardized fashion.

Despite the availability of these NLP-extracted datasets, there is 
little previous work exploring the construction and analysis of CRNs 
created with them as a primary data source. One of the challenges 
in using the literature as the main source of data for a CRN is that it 
introduces human bias by limiting the scope of chemical complexity 
considered to only that which has previously been observed, similar 
to the constraints of using prescriptive templates. It follows that a 
promising (and largely unexplored) opportunity for the use of these 
literature-derived datasets is the comparison between experimental 
and theoretical CRNs. By analyzing differences between theoretical 
CRNs and literature-derived CRNs, researchers may target areas where 
observed phenomena cannot yet be theoretically explained, or iden-
tify experimentally unexplored chemical spaces and new synthesis 
approaches that are predicted to be fruitful based on calculations. 
This type of comparison has become increasingly enabled in organic 
chemistry by the recent development of robotic lab platforms that can 
rapidly perform experiments in an automated fashion118, including in 
a self-driving laboratory context119. These systems make it possible to 
not only validate and perform synthesis protocols extracted from the 
experimental literature120 but also to accumulate sufficient reaction 
data to develop more comprehensive experimental CRNs, including 
those which contain ‘negative’ reaction data from failed experiments, 
which has been shown to greatly enhance the performance of ML mod-
els predicting reaction outcomes121.

Reaction property prediction. Given a set of reactions, R, and a prop-
erty of interest associated with each reaction, ML regression models 
can be to applied to approximate the relationship between each reac-
tion and its associated property. Unlike ML interatomic potentials 
(‘Learning potential energy surfaces’ section), which need to satisfy 
symmetry requirements and can only take atomic number and coordi-
nates as input122, ML models for reaction property prediction (Fig. 3e)  
are more flexible. They can take a much wider set of features as input 
and have been applied to a variety of thermodynamic and kinetic reac-
tion properties, such as reaction energies71, bond dissociation ener-
gies123,124, reaction energy barriers104,125,126 and rate coefficients127,128. 
Once trained, a model can act as a data source and thus be employed 
to rapidly predict the properties of unseen reactions (kinetic proper-
ties are of particular interest), enabling the investigation of large-scale 
CRNs consisting of tens of thousands of reactions. For example, assum-
ing a constant activation barrier of 0.3 eV for all reactions and using 
ML-predicted reaction energies, Stocker et al.71 were able to perform 
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mean-field microkinetic simulation for a CRN containing 21,393 ele-
mentary reactions to study methane combustion. The flexibility in 
the choice of ML algorithms and training data for property prediction 
models makes them prolific in the literature. However, it can be very 
difficult for a user to select an existing model for CRN applications 
because model performance depends heavily on the ML algorithm, 
test data and, of course, the property to predict. Benchmarking these 
models on common data is in urgent need.

As discussed in the ‘Reactive properties’ section, environmental 
influences such as interfaces and solvent on reaction properties must 
be carefully considered when using them in CRNs. Environmental influ-
ences can be explicitly modelled by ML property prediction algorithms. 
For example, the FieldSchNet can model the interaction of molecules 
with arbitrary external fields, which enables it to describe implicit and 
explicit molecular environments, operating as a polarizable continuum 
model for solvation129. Models without an algorithmic consideration of 
environmental effects can still be used to predict properties of reactions 
in specific environments. They, however, would be best trained using a 
transfer learning approach (see ‘Refining reaction properties’ section), 
pretrained and fine-tuned on data without and with environmental 
effects, respectively, because the former is much easier to obtain.

ML for CRN analysis
System dynamics. Solving for the concentrations of different chemi-
cal species over time is known as the ‘forward’ solution of chemical 
dynamics (see also ‘CRN characterization’ section). One can also solve 
the ‘inverse’ problem where, given observed system dynamics, one 
seeks to recover the underlying reactions or rate equations (Fig. 3f). 
ML provides potential opportunities to solve both of these problems 
more efficiently. While ML could also be applied to stochastic methods 
such as kinetic Monte Carlo, here we focus on ML applied to methods 
based on coupled differential equations.

In the context of CRNs, preliminary work has looked at stabiliz-
ing neural network gradient calculations by scaling model outputs 
to mitigate the challenges associated with stiff dynamics (see ‘CRN 
characterization’ section)130. In addition, differential equations rep-
resenting physical invariances can be added as ‘soft’ constraints to an 
ML objective function, thus penalizing the ML model to satisfy it131. 
Another approach to solving CRN dynamics is to use physics-informed 
ML models employing concepts such as quasi-steady-state kinetics to 
reduce the stiffness of the system and then train the ML model under 
the imposed soft constraint132. However, there are still many challenges 
associated with developing physics-informed models. For instance, 
optimization during the training process can be challenging and many 
ML models, such as neural networks, can struggle to converge133,134. 
They may also not preserve the correct inductive biases (for instance, 
continuity or conservation of energy), which may not be immediately 
apparent from standard ML training and testing pipelines without 
devising specific robustness testing strategies135,136. One potential 
direction forwards is to enforce physical constraints more precisely 
by incorporating differentiable numerical simulations into the train-
ing procedure via implicit differentiation137,138. On the efficiency side, 
instead of solving one specific parameterized differential equation at 
a time, it may be more fruitful to deduce the full family of equations by 
learning the mapping between parameterized differential equations 
and their solutions (and vice versa)139,140. The ML techniques applied 
to more accurately model highly nonlinear systems (such as chaotic 
systems141) may also provide insight for modeling CRNs displaying such 
behavior. Developing better ML techniques to overcome these chal-
lenges will be crucial to solving and understanding dynamic behavior 
in CRNs, particularly over long timescales.

Model reduction. Not every species and reaction in a CRN is equally 
important; as noted in the ‘CRN characterization’ section, CRNs 
often have a small number of highly connected—and therefore 

important—‘hub’ species and a larger number of peripheral species 
that participate in few reaction pathways. To improve the efficiency 
of CRN analysis, it is therefore useful to perform model reduction, 
eliminating species and reactions that have little or no effect on the 
outcome, thus yielding a simplified CRN while retaining the accuracy 
of the more extensive network. While model reduction is generally 
useful for accelerating CRN analysis, it has been most widely applied 
in the past to improve simulations of network time dynamics. Conven-
tional model reduction methods include sensitivity analysis, timescale 
exploitation approaches and singular-value-decomposition-based 
approaches, among others142.

ML techniques offer a data-driven approach for CRN model reduc-
tion. One such approach is to formulate model reduction as a sparse 
learning problem that optimizes the reaction rates and introduces 
regularization terms to enforce sparsity (Fig. 3g). For example, least-
squares optimization with L1-norm regularization143 and L2-norm 
regularization144 can be used to identify reduced CRN systems. How-
ever, these methods are limited to data obtained from the equilibration 
phase, and are thus unable to recover the reaction dynamics. Katsou-
lakis and Vilanova145 instead used variational inference, learning the 
probability distribution of different states in biochemical reaction 
networks. This approach allows for a simultaneous sensitivity analysis 
and optimization of a reduced network; moreover, variational inference 
allows one to perform stochastic sampling of a reactive space much 
more efficiently than Monte Carlo methods146. Rather than directly 
learning the dynamics of the complete or a reduced network, as in the 
‘System dynamics’ section, Wang et al.147 used a deep neural network 
to learn the error between the exact model and a guess reduced model. 
This predicted error allowed the authors to intelligently select which 
reduced model to select next for evaluation, accelerating the reduced 
model optimization by many orders of magnitude. A similar approach 
using Gaussian process ML to develop a surrogate model for stochastic 
CRNs was earlier conducted by Singh and Hellander148.

We note that, for the most part, the ML methods discussed here 
have been successfully applied to only relatively small CRNs and toy 
models. It is therefore unclear what the accuracy and computational 
expense of ML model reduction may be for large complex chemical 
systems. The extension and quantification of the methods in these 
directions needs additional development.

Conclusions and outlook
Developing CRN-ML methodologies is a substantial research challenge 
demanding creativity and concerted effort. Thus far, applications of ML 
to CRNs have mainly focused on reducing the computational burden. 
Most models have been developed to either replace quantum chemical 
calculations or guide what reaction properties to collect by experiment 
or computation. These models are abundant largely because they can 
be relatively easily created by slight adjustment of existing ML meth-
ods that are well developed for other chemical applications. Closer 
integration of ML to address long-lasting challenges that are specific 
to CRNs (for instance, network expansion and model reduction) has 
already begun to emerge; however, such integration is not as straight-
forward and thus is still very sparse. We anticipate that designing new 
ML methods that take advantage of CRN characteristics (for example, 
the (hyper)graph structure and the sparsity of the system dynamics) 
should be a viable path forwards to address such challenges.

A second challenge is the dearth of high-quality data. Despite 
the advancement in high-throughput experiments and quantum 
chemical calculations in the past decade, it is still a formidable task to 
assemble a sufficiently large dataset for CRN-ML problems, especially 
for complex systems. Emerging ML techniques, such as NLP, active 
learning with iterative generation of data, geometric deep learning 
that allows for direct incorporation of chemical and physical con-
straints, and electronic structures calculations with learned density 
functionals, have great potential to alleviate the data scarcity problem.  
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Notably, we expect them to be leveraged in predicting the activation 
barriers and rates of individual reactions in a CRN, which is notoriously 
difficult but extremely important.

A third pressing challenge is actually technical in nature. A number 
of new computational tools and ML frameworks have been developed 
over the past several years with great potential to be applied to CRN 
problems. Despite that, at present, there are few standard tools avail-
able for the construction and analysis of CRNs. Open-source libraries 
and repositories are thankfully abundant, but most are research codes 
tailored to specific applications, limiting widespread utility. Moreover, 
there are no standard CRN problems that are well suited to benchmark-
ing. We strongly encourage members of the CRN research community 
to collaborate on general-purpose software for CRNs and to develop 
open datasets and tasks to facilitate the testing of new CRN method-
ologies and the benchmarking of CRN-ML models. The development 
of such standards not only will aid existing research efforts but also 
may attract ML researchers and computer scientists to study CRNs.

If the existing challenges in combined CRN-ML studies of chemical 
reactivity can be overcome, we see substantial opportunities to expand 
the horizon of what is possible in computational studies of chemical 
reactivity. For systems that are already commonly studied using CRN 
approaches, ML offers potential avenues to allow for a greater degree 
of automation and more thorough exploration of chemical space, 
particularly for long-time processes that can only be reached deep in 
a chemical cascade. At the same time, ML could open the door for com-
putational CRN studies in domains that cannot currently be tractably 
studied for reasons of scale (such as polymerization/depolymerization) 
and complexity (for instance, photoelectrocatalysis).
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