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Abstract

Applications of deep learning (DL) to design nanomaterials are hampered by
a lack of suitable data representations and training data. We report efforts to
overcome these limitations and leverage DL to optimize the nonlinear optical
properties of core-shell upconverting nanoparticles (UCNPs). UCNPs, which have
applications in e.g., biosensing, super-resolution microscopy, and 3D printing,
can emit visible and ultraviolet light from near-infrared excitations. We report
the first large-scale dataset of UCNP emission spectra based on accurate but
expensive kinetic Monte Carlo simulations (N > 6,000) and use this data to
train a heterogeneous graph neural network (GNN) using a novel representation
of UCNP nanostructure. Applying gradient-based optimization on the trained
GNN, we identify structures with 6.5x higher predicted emission under 800nm
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illumination than any UCNP in our training set. Our work reveals new design
principles for UCNPs and presents a roadmap for DL-based inverse design of
nanomaterials.

Keywords: Upconversion, Nanoparticle, Machine Learning, Graph Neural Networks,
Inverse Design

Introduction

Applications in clean energy, advanced manufacturing, biomedicine, photonics, and
microelectronics increasingly demand new materials with complex structures and het-
erogeneous composition.[1] In principle, machine learning (ML) offers a strategy to
accelerate the discovery of such materials, as it has emerged as a transformational tool
for the design of small molecules, bulk inorganic crystals, and even single-component
nanomaterials.[2–4] Deep learning (DL) approaches are particularly well suited to
model the behavior of systems with large numbers of parameters, but several obsta-
cles hinder DL from being used to guide the discovery of the complex materials often
needed for real-world applications, including nanostructures and composites.

First, state-of-the-art approaches for representing materials often fail to capture
the structural complexity of nanomaterials, such as multi-shell nanoparticles[5–12]
(Figure 1a) and nanowire heterojunctions, in which nanostructure controls energy
transport (Figure 1b).[1] Nanomaterials exhibit distinct and often superior properties
compared to their bulk counterparts, driven by nanoscale confinement and high surface
areas relative to their volume.[13–15] However, the large number of features required
to adequately describe a nanoscale material (e.g., the morphology, dimensions, com-
position, heterogeneity, doping, defects in each domain; internal interfaces, surface
ligands) make training on naive tabular representations computationally inefficient,
in part because they neglect physical relationships between features.[16] While bulk
crystals can be represented by their unit cell coordinates (e.g., CIF) and small organic
molecules by strings (SMILES,[17] SELFIES,[18]), graphs, or atomic coordinates, such
atomistic representations are impractical for complex nanomaterials because their crit-
ical features often span length scales of one to >106 atoms and cannot necessarily
be reduced to periodic subunits.[19, 20] More recent DL approaches encode spatial
information as pixels or voxels, but these fixed-resolution representations cannot effi-
ciently capture the structural hierarchy of a wide range of nanomaterials, e.g., those
of different sizes.

Beyond the challenge of representing nanomaterials, it is also challenging to gen-
erate datasets sufficiently large to train DL models that can accurately predict
the properties of heterogeneous, multi-component nanostructures.[21] Although high-
throughput experimental and computational approaches are growing in their avail-
ability and utility,[22–24] the synthesis and simulation of complex heterostructures
is often time-consuming, limiting the scale of available datasets[25] and constraining
campaigns to the “small data” regime where DL techniques often struggle. Modern DL
models can also have difficulty extrapolating outside of the envelope of their training
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data, which is necessary for the discovery of novel materials with enhanced properties.
Finally, the discovery of fundamentally new materials is complicated by the rough
response surfaces of material properties with respect to their composition, necessitat-
ing dense and tedious ”needle-in-a-haystack” searches across a parameter space. The
prediction of materials with targeted properties, or inverse design, would be signifi-
cantly accelerated by surrogate models that are differentiable so that gradient-based
optimization techniques can be used to direct efficient searches.[3] Thus, DL-guided
inverse design of complex materials would benefit from the development of large
structure-property datasets of complex nanomaterials, new methods to represent them
across lengths scales, and differentiable models that are accurate out of their training
distribution.

In this work, we develop a heterogeneous graph representation for nanomateri-
als with a variable number of spatial domains, each containing multiple components
that can interact within the same domain and across interfaces. We demonstrate that
physics-informed graph neural networks (GNNs) built atop such representations can
accurately predict properties of nanostructures which are far more complex than any
contained in the training dataset. As a model system, we center our investigation
on lanthanide-doped upconverting nanoparticle (UCNP) heterostructures (Figure 1a),
whose unique nonlinear optical properties have diverse applications in biological and
super-resolution imaging,[26] optogenetics, sensing, photonics,[27] scintillators, secure
labeling, 3D printing,[28] and photovoltaics.[29] These applications leverage the abil-
ity of UCNPs to absorb multiple near-infrared (NIR) photons and convert them into
a single photon of higher frequency, e.g., in the visible and ultraviolet spectrum. Such
nonlinear processes are the result of complex networks of energy transfer (ET) inter-
actions between different lanthanide ions (e.g., Yb3+, Er3+, and Nd3+, as in Figure
1b). To promote advantageous ET interactions and inhibit those that quench emis-
sion, nearly all practical implementations of UCNPs use doped heterostructures in
which a spherical core is surrounded by one to four concentric shells, with each domain
having a distinct combination and composition of lanthanide ions (Figure 1c). Due to
the large numbers of tunable structural and compositional parameters, and the com-
plex network of energy transfer interactions between dopants, optimizing the intensity
and wavelength for such complex heterostructures is extremely challenging.[30] Thus,
multi-shell UCNP heterostructures present a stringent test for any new DL model and
representation.

To train these DL models, we generated a dataset of Simulated Upconverting
Nanoparticle Spectra for Emission Tuning (SUNSET), consisting of results from
∼6,000 kinetic Monte Carlo (kMC) simulations of nanoparticle photophysics (Figure
1d). Models trained on SUNSET aim to predict photon emission within a specified
wavelength band as a function of UCNP heterostructure. By training on simulations
of UCNPs with up to three shells and evaluating on simulations with four shells,
we can quantify the capacity for models to extrapolate to larger and more com-
plex heterostructures. We find that our heterogeneous graph representation, informed
by UCNP physics and geometry, allows DL models to achieve far higher prediction
accuracy than tabular, image, and homogeneous graph representations (Figure 1e),
especially when extrapolating beyond the training data. The differentiability of our
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heterogeneous GNN also yields gradients of emission intensity with respect to layer
thicknesses and dopant concentrations (Figure 1e), which are not accessible from
kMC. Our trained model thus facilitates inverse design of UCNP heterostructure via
gradient-based optimization (Figure 1f), identifying novel superior UCNPs with a
range of sizes and up to ten shells. When excited at 980 or 800 nm, these optimized
UCNP heterostructures exhibit exceptionally high emission between 300-450 nm, a
spectral range useful for inducing photochemistry for optogenetic, catalytic, therapeu-
tic, and 3D printing applications. To validate these predictions, we perform additional
months-long kMC simulations which indicate that our model possesses considerable
ability to extrapolate far out of distribution and can suggest never-before-seen struc-
tures with high accuracy, further revealing novel design principles. These findings
demonstrate a path forward for the optimization and discovery of technologically use-
ful UCNPs and offer inspiration for the development of novel DL representations and
models which enable inverse design for a broad range of optical nanomaterials.

Results

Dataset construction

To develop and train DL models that can predict core-shell UCNP photophysics and
ultimately enable inverse design of UCNPs with complex heterostructures that exhibit
efficient UV and blue emission (300-450 nm), we generated SUNSET: a dataset of
over 30,000 multi-shell UCNP spectra calculated with a high-performance kMC sim-
ulation package (RNMC)[31] optimized for chemical reaction networks and UCNP
photophysics[9] (Figure 2). SUNSET consists of four sub-collections (SUNSET-[1, 2,
3, 4]) that include different dopant ion combinations and surface effects (see Figure
2a). While each of the sub-collections provides utility for model development and
testing, we focus exclusively on SUNSET-1 in our main narrative; discussion of the
SUNSET-[2–4] collections can be found in the Supplementary Information. We focus
on SUNSET-1 because this sub-collection includes nanoparticles of variable size and a
variable number of shells, which is necessary for training models that have the possibil-
ity of extrapolating to more complex heterostructures and thus facilitating impactful
inverse design. Further, the nanoparticle structures in SUNSET-1 are substantially
larger than in SUNSET-[2–4] (given that they contain multiple layers, and each layer
must be at minimum 1nm thick in order to be synthesizable), and thus the vast major-
ity of the computational cost of SUNSET went towards the ∼6,000 simulations in
SUNSET-1. We note that individual kMC trajectories often took weeks to complete,
necessitating the use of high-throughput self-checkpointing workflows. Further details
of our workflow infrastructure are given in Section S1.

SUNSET-1 utilizes a dopant set of Er3+, Nd3+, Yb3+ because this combination of
dopants has been used to sensitize upconversion[6] and optogenetic activity[32] with
800 nm excitation, a wavelength that lies in the NIR-I biological imaging window.
Segregation of these dopants into different shells of UCNP heterostructures has been
shown to dramatically enhance emission.[6] In these systems, Nd is typically included
to sensitize the absorption of the 800 nm excitation, Er to upconvert absorbed energy
and emit UV/visible light, and Yb to act as a conduit to transfer energy between Nd
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Fig. 1 a) (left) Schematic of doping heterostructured UCNPs. b) Illustration of the importance
of heterostructuring to physically separate dopants. In the core-only particle, all dopants interact
to a high degree, leading to cross-relaxation and consequently low upconversion efficiency, while
separation of Er and Nd into different regions via heterostructuring prevents cross-relaxation and
facilitates UV emission. c) 2D visualization of a heterostructured UCNP with core and shell doping. d)
Overview of physics-infused deep learning for the inverse design of UCNPs. We first construct a large
dataset of simulated UCNPs using high-throughput kMC simulations. Then, we investigate different
representations of heterostructured UCNPs and find best performance with a heterogeneous graph
representation in a GNN. The resulting trained model can provide the gradient of emission intensity
with respect to each structural parameter, enabling inverse design via gradient-based optimization of
UCNP heterostructure to maximize UV emission.

and Er dopants that would otherwise quench each other via cross-relaxation energy
transfer. The nanoparticle heterostructures sampled in SUNSET-1 are variable, with
core radii ranging from 1–4 nm and up to 3 shells, each measuring between 1–2.5 nm
in thickness, as depicted in Figure 2b. To probe the extrapolatory power of developed
models, we simulate explicit 4-shell nanoparticles and hold them out of training data
to use as an out-of-distribution (OOD) test set. Thus, SUNSET-1 as a whole has
nanoparticle radii spanning from 1–13.6 nm, and the brightest particle has an intensity
of ∼ 20,000 cps. Ivis−UV most closely follows an exponential distribution, so we use
the log(Ivis−UV ) as the target label for model training.
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Fig. 2 a) Summary of the SUNSET dataset, including excitation wavelength, fixed versus variable
nanoparticle size, dopants used, presence or absence of luminescence-quenching surface ligands, and
scale in terms of number of data points. b) Graphical depiction of SUNSET-1 heterostructures, ID
versus OOD split, and statistical distributions of structural features.

Representing Nanoparticle Structure for Machine Learning

To train ML models on the SUNSET data, we initially investigated several existing rep-
resentations for encoding the compositional and dimensional features of each UCNP.
As we summarize in Table 1 and discuss in more detail in the “Model Performance”
section, we found that standard ML models (e.g., random forest regressors and convo-
lutional neural networks) utilizing tabular and image-based representations exhibited
poor ability to extrapolate, with 3- to 10-fold lower accuracy during out-of-distribution
testing (OOD) than during in-distribution testing (ID).

Seeking representations and models with greater ability to extrapolate to more
complex nanostructures, we explored the use of graph-structured representations,
which have recently gained prominence due to their ability to effectively capture
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complex relationships (edges) between entities (nodes).[33] The simplest graph repre-
sentation of a UCNP is a homogeneous graph in which each node is labeled with the
identity and concentrations of a single type of dopant (e.g., Er) in a specific domain
of the UCNP (e.g., the core), while edges encode interactions between dopants repre-
sented by those nodes, i.e., energy transfer processes. However, we found that GNNs
utilizing these homogeneous graph representations exhibited equally poor accuracy for
both ID and OOD testing (Table 1).

Reasoning that the poor performance of homogeneous GNNs was related to inad-
equate representation of the physical interactions between dopants, we developed a
UCNP representation based on a directed heterogeneous graph (Figure 3a). Unlike
the homogeneous graphs, dopant-dopant interactions in our heterogeneous graphs are
represented by interaction nodes that connect dopant nodes (via edges), allowing
the encoding of additional physical features of the interactions. Two different types
of interaction nodes are used, intra-layer and trans-layer, to delineate interactions
between dopants within the same geometric region (i.e., core or shell domain) and
those in different regions, respectively. It is important to note that dopant nodes are
never connected to other dopant nodes, and every interaction node connects exactly
two dopant nodes. A self-interaction node, describing interactions between different
dopant ions of the same type in the same region, has edges both from and to the same
dopant node. The use of a directed graph introduces asymmetry in energy transfer
between two dopants (e.g. Yb → Er as compared to Er → Yb). This is important for
energy transfer processes that are not reversible, such as non-resonant, phonon-assisted
energy transfer that results in irreversible heat dissipation.[34]

When establishing features encoded in the nodes, we chose a minimal set of descrip-
tors that are most relevant for UCNPs. Dopant node features include dopant type,
dopant concentration (within the respective region), and geometric bounds (inner and
outer radii of the core/shell domain they reside in). The interaction nodes contain the
interaction type (e.g., Yb-Er, Er-Yb, Er-Er, . . . ) and features derived from the pair
of connected dopant nodes — dopant concentrations and geometric bounds. Since we
explore only spherical nanoparticles with multiple concentric shells, layer radii fully
specify heterostructure geometry.

To further account for the effect of distance and region geometry on dopant energy
transfers, we introduce a quantity that we call the “integrated interaction.” This
quantity is derived by integrating a Gaussian function, denoted as N (s; 0, σ), over all
pairwise distances, s, between interacting regions, Vi and Vj , as illustrated in Fig. 3b:

II = xi ∗ xj

∫ ∫
N (s; 0, σ)dVidVj , (1)

s(r1, θ1, ϕ1, r2, θ2, ϕ2) =
√

r21 + r22 − 2r1r2 (sin(θ1) sin(θ2) cos(ϕ1 − ϕ2) + cos(θ1) cos(θ2))

(2)
where xi and xj are the doping concentrations in regions i and j, respectively and s is
written in spherical coordinates. While the probability of energy transfer between two
dopants is actually proportional to distance−6, we chose to represent this probability
as a sum of Gaussian functions because they are continuous at x = 0 and can be
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Fig. 3 a) Heterogeneous graph structure of an example two-region (core plus one shell) nanoparticle
with Yb and Er dopants. b) Depiction of the Integrated Interaction, which captures the geometric
interaction between two regions. c) The architecture of the heterogeneous graph model. d) Schematic
of the operations for embedding dopant features to obtain the initial dopant attribute. e) Schematic
of the embedding process for interaction nodes.

integrated multiple times while still capturing the decaying nature of energy transfer
with increasing distance between two ions. Adjusting the σ parameters within the
Gaussians allows for the modulation of the effective interaction distance of dopants.
When used in the ML model, the integrated interaction module is parameterized by n
learnable weights (here n = 5) each corresponding to a σ value of one of the Gaussians
in the sum.

The proposed heterogeneous graph structure lends naturally to the use of GNNs for
DL. In our heterogeneous GNN (Figure 3c), we first embed information from each node
into a continuous vector space. We construct the dopant node embeddings by passing
the dopant type (Zi) through an embedding layer, then contextualizing the initial
embedding on the dopant concentration (xi) and the radii (ri0 and rif ) using feature-
wise linear modulation (FiLM) layers, as shown in Figure 3d. Likewise, to obtain the
embedding vector for the interaction nodes (Figure 3e), we pass the interaction type
(τij) through an embedding layer and then condition on the integrated interaction
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using a FiLM layer. A batch normalization is applied prior to the FiLM layer to
shift the distribution of integrated interaction values. Note that ”contextualizing”
or ”conditioning” a vector (i.e., an initial embedding) on another value (e.g. dopant
concentration, layer radii, or integrated interaction) with a FiLM layer is a way of
combining the information contained in each via an operation that is controlled by
many learnable parameters, which often provides better expressivity and performance
than a simple concatenation or addition.[35] The resulting dopant and interaction
embeddings are then used as the inputs for three iterations of message passing (MP)
based on the heterogeneous graph’s directional edges, where each MP iteration employs
graph attention via the GATv2 operator,[36] after which we use mean aggregation
to obtain the global latent representation. Finally, a fully connected neural network
(FCNN) is used for label prediction (i.e. predicting the log of the emission intensity
over the specified wavelength band) from the global latent representation.

Model Performance

To assess the performance of the heterogeneous GNN (“hetero-GNN”) described above
with respect to other models and representations, we train each on the SUNSET-1
dataset, where our target label is emission intensity from the UV-blue (300-450 nm)
wavelength band, and training data include 800-nm excited UCNPs with 0-3 shells.
We evaluate the mean squared errors (MSEs) of each model when predicting the
intensities of held-out ID samples as well as for OOD nanoparticles with 4 shells (Table
1). We compare the hetero-GNN to four well-established supervised learning models:
two models (a random forest regressor and a FCNN multi-layer perceptron) using a
tabular representation; a CNN using an image representation; and the homogeneous
GNN described above. Model hyperparameters are provided in Section S8. Additional
model, representation, and feature details are provided in Sections S4, S5, and S6.

Of the five models tested, the hetero-GNN exhibited the lowest error for both ID
and OOD testing, with MSE values of 13.9 and 22.2 photon counts-per-second (cps),
respectively (Table 1). The ID loss is 4-fold lower than that of models utilizing tabular
representations (RFR and FCNN) and 21.5% lower than the CNN utilizing an image
representation. The fact that the image- and heterogenous graph-based models have
the best ID accuracies demonstrates how their representations allow them to leverage
spatial information to learn relationships between heterostructure and properties and
to connect the common behavior of dopant ions of the same type but located in
different regions. It is notable, however, that the least accurate model for ID testing was
also based on a graph representation. The homogeneous GNN exhibited 6-fold higher
MSE than its hetereogeneous analogue, highlighting that the enhanced accuracy of the
hetero-GNN is the result of its incorporation of interactions as nodes in the graphs.

We believe that the promotion of dopant-dopant interactions to a node-level
property specifically improves hetero-GNN performance by elevating the prominence
of interaction features during message passing. When included as explicit nodes,
the interactions are able to alter the content of the passed messages, allowing
for the transmission of richer and more physically relevant information. This par-
allels the photophysics of UCNPs, in which energy transfer interactions between
dopants critically determine the excited state populations of donors, acceptors, and
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Table 1 An overview of the performance of different models on the SUNSET-1
dataset, assessed using the mean squared errors (MSE, Equation 3) of predicted
Ivis−UV derived from 10-fold cross-validation both for SUNSET-1
in-distribution (ID) test, containing structures with up to three shells, and for
SUNSET-1 out-of-distribution (OOD) test, containing structures with four
shells. The first value in each cell is the mean squared error (MSE) in photon
counts-per-second (cps) multiplied by 10−3 for easier interpretation. The second
value in parentheses is the normalized mean squared error (NMSE) which is the
MSE normalized by the sum of squares to yield a relative error (Equation 4).
The lowest errors for each category, both of which are achieved by the
hetero-GNN, are emphasized with bold text.

RFR FCNN CNN GNN Hetero GNN

ID Test 57.2
(7.3%)

55.8
(6.6%)

17.6
(2.1%)

84.3
(9.9%)

13.8 (1.6%)

OOD Test 365.8
(36.6%)

526.6
(55.5%)

49.0
(5.2%)

89.6
(9.4%)

22.1 (2.3%)

their neighbors,[30, 37] driving nonlinear processes such as upconversion, photon
avalanching,[5, 38] and quantum cutting.[39] In contrast, interaction features in homo-
GNNs have less influence on predictions because edge properties can only contribute
to the attention score, influencing the weighting of the messages being passed between
dopant nodes rather than the information contained therein. The heterogeneous graph
structure also allows for the embedding of interactions between lanthanide dopants.
This embedding introduces valuable inductive bias concerning the distinctness of lan-
thanide interactions, constraining the model to treat the dopant pairs (e.g., Yb-Er)
equally, agnostic to which layers they reside in (e.g. the first or second shell), albeit
with varying strengths.

The most striking benefit of the hetero-GNN is its ability to extrapolate, in this case
to 4-shelled nanostructures not included in its training set. When switching from ID
to OOD testing, the MSE for the hetero-GNN model increased by 8.3 cps, or 1.6-fold.
This modest increase in loss is in stark contrast to the tabular-representation-based
RFR and FCNN models, for which extrapolation resulted in 6- to 10-fold increases
in the MSE, respectively. The tabular models lack the geometric and relational infor-
mation of the graph models and therefore must learn the influence of the dopants in
each layer independently. This increases the data demand of these models, making
them prone to overfitting and reducing their ability to predict the properties of unseen
heterostructures. Even the image-based CNN, which had high ID accuracy, exhibited
2.8-fold greater loss during OOD testing. We ascribe the significantly greater ability
of the hetero-GNN to generalize to its graph representation. This conclusion is sup-
ported by the fact that the homogeneous GNN also exhibits very little change in loss
(+6.5%) when shifting from interpolation to extrapolation. In summary, representing
UCNP heterostructures as heterogeneous graphs results in a hetero-GNN that exhibits
both high accuracy and extrapolative capacity, in contrast to existing models that
are inaccurate (homo-GNN), poor at extrapolation (image CNN), or both (tabular
models).
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Fig. 4 Arbitrarily subdividing a structural region in a heterostructured nanoparticle leaves the
nanoparticle physically unchanged. Such “subdivision invariance” is not reflected in nanoparticle
graph representations. a) 2D visualizations of physically equivalent core and arbitrarily subdivided
core-shell nanoparticles, along with their non-equivalent heterogeneous graph representations. b) Sub-
division invariance is promoted in hetero-GNNs using on-the-fly data augmentation. In contrast to
the nonaugmented training procedure (b, top), on-the-fly data augmentation is performed during
each training epoch by inserting a random number of subdivisions into UCNPs at random radial
coordinates (b, bottom). This process implicitly multiplies the number of unique heterograph rep-
resentations of UCNPs seen by the model during training by the number of training epochs, and
reduces OOD error by 25%

Data Augmentation: Training Subdivision Invariance

While the hetero-GNN exhibits superior performance to the CNN, the image repre-
sentation has the physically intuitive property that arbitrarily subdividing a given
nanoparticle region (e.g. dividing a shell into two smaller shells, where both have
the same dopant concentrations as the originally undivided region) has no impact
on the model’s structural representation or subsequent label prediction. This prop-
erty, which we call “subdivision invariance”, is physically motivated by the fact that
region subdivision is arbitrary and leaves the nanoparticle being described completely
unchanged. However, neither our heterogeneous graph nor any of the other non-image
representations are inherently subdivision invariant. For example, as shown in Figure
4a, subdividing an originally core-only particle into a core and a shell dramatically
changes the heterogeneous graph, and thus our hetero-GNN model may predict very
different latent representations for physically identical nanoparticles. This is clearly
undesirable and may be detrimental to both the learning process and subsequent
structural optimization. On the other hand, the voxelization that makes the image
representation subdivision invariant simultaneously causes layer dimensions to only
be present in the model implicitly, preventing UCNP emission from being differenti-
ated with respect to layer thicknesses and precluding gradient-based optimization of
UCNP heterostructure. Thus, any DL model that aims to enable inverse design of
nanomaterial heterostructure via gradient-based optimization will need to reckon with
the problem of subdivision invariance.

Even when an input representation is not inherently subdivision invariant, it is
possible to design the DL model built atop the representation to explicitly enforce
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subdivision invariance such that physically identical structures yield identical latent
representations. However, in the context of a graph representation, such explicit
enforcement is only possible by avoiding the use of any non-linear operations, which
dramatically limits model expressivity and performance.

An alternate strategy is to train models to approximate subdivision invariance
via data augmentation. Using data augmentation to train approximate invariances
in different DL contexts (e.g. image rotation, reflection, etc. in CNNs,[40] molecu-
lar rotation and translation in interatomic potentials[41]) is well established and can
enhance model prediction accuracy and robustness. We apply this augmentation strat-
egy to our hetero-GNN model by artificially subdividing the UCNP input with the
same labels (emission intensities) but with structural representations modified with
random subdivisions. This data augmentation is meant to guide the learned latent
representation to exhibit approximate subdivision invariance, which should improve
model performance. This strategy is implemented on-the-fly (Fig. 4 b), so that data
in each batch are augmented as they appear during training, rather than augmenting
the entire dataset before training. Thus, this does not explicitly increase the size of
the training dataset, but implicitly multiplies the number of unique heterograph rep-
resentations of UCNPs seen by the model during training by the number of training
epochs. Random subdivisions result in a node with rinner, router, being split into two
nodes with rinner, rsubdivision and rsubdivision, router, where rinner < rsubdivision < router.
Additional details about data augmentation are provided in Section 5.

When the hetero-GNN is trained using on-the-fly-augmentation, its performance
improves by 23% on the ID test set (with error falling from 13.8 cps to 10.6 cps)
and by 25% on the OOD test set (with error falling from 22.1 cps (2.3%) to 16.5 cps
(1.7%)). Additionally, we validated that this augmentation scheme actually trains the
model to learn subdivision invariance by evaluating the vector distance between the
representation of nanoparticles and their subdivided analogs, observing that the aug-
mented hetero-GNN model more closely represented the subdivided UCNPs in the ID
and OOD test sets in embedding space than the nonaugmented model across a range
of subdivisions (Figure S6). These results underscore the importance of considering
subdivision invariance in model training.

Nanoparticle Optimization

The hetero-GNN is fully differentiable and takes the features that define the UCNP
heterostructure (i.e., layer radii and dopant concentrations) as explicit inputs. For
optimization, the hetero-GNN acts as a surrogate model for kMC which is not only
orders of magnitude faster, but also provides derivatives of a predicted label with
respect to structural features (which are inaccessible with kMC), enabling the use of
more powerful gradient-based optimizers to identify UCNP structures that minimize
or maximize one or multiple properties.

To explore the utility of our differentiable model for inverse design, we use the
hetero-GNN trained on SUNSET-1 with augmented data to search for Yb/Er/Nd-
codoped UCNPs with the highest UV/blue intensities under 800-nm excitation. To
facilitate the discovery of novel heterostructures, we conduct optimizations far beyond
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the structural distribution spanned by our training data. While the SUNSET-1 train-
ing set contains UCNP structures with up to four regions (i.e., a core and three shells)
and with a maximum radius of 11.5 nm, our optimizations explore UCNPs with up to
ten regions (i.e., a core and nine shells) and a maximum radius of 15 nm. Further, while
the core radius is limited to a maximum of 4 nm and shells are limited to a maximum
thickness of 2.5 nm in the training data, we remove both of these upper bounds and
only limit the overall radius during optimization. However, we do retain a minimum
core radius and shell thickness of 1 nm to ensure that the optimized heterostructures
are synthesizeable[42].
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Fig. 5 a) The optimization matrix illustrates Ivis−UV intensity predictions for different particle
sizes and numbers of layers. Each square represents the total UV and near-UV intensity obtained
from validation and predicted by the ensemble of models. b) This panel provides a representative
sample of the optimized particles. Note: kMC simultions of the optimized 2-layer 15 nm particle were
not possible due to too many Er3+ dopants crashing the simulation

13



Given randomly initialized nanoparticle structures, we employ a combination of
trust region constrained local optimization[43, 44] and basin hopping global optimiza-
tion to identify UCNPs with maximized UV/blue emission as a function of maximum
allowed nanoparticle radius and the number of distrinct regions in the heterostructure.
Section 5 contains additional details of our optimization approach. The maximum
intensities identified for UCNPs of different sizes and different numbers of regions
(core + shells) are illustrated in Figure 5a. The optimal structure for each distinct
radius + region number was then simulated with kMC, for which larger radius par-
ticles often required months-long simulations. The colors of the two triangles in each
square indicate the kMC-simulated and ML-predicted intensities for the optimized
structure. Remarkably, the model demonstrates accurate predictions for the upconver-
sion luminescence of particles with significantly out-of-distribution radii and numbers
of regions, including when the UV emissions approach an order of magnitude higher
than those in the training set.

Optimization results display several trends that are well established in the exper-
imental literature on UCNP heterostructures. Optimized UCNPs generally achieve
higher absolute brightness at larger diameters, presumably because they are able to
host a greater number of absorbing and emitting dopants.[45] The optimized het-
erostructures for several representative sizes (Fig. 5b) show that the domains of these
champion UCNPs are in fact heavily doped – or rather, alloyed,[46] with up to 100%
lanthanide substitution – to maximize absorption and emission throughput. Rather
than spreading dopants homogeneously through UCNPs, the brightest structures par-
tition Er and Nd dopants into separate shells, reflecting the established knowledge
that Er and Nd are prone to quench each other via cross-relaxation.[47]. Since the
energy absorbed by Nd must be transferred to Er for upconversion, the optimizer
produced structures that separate Nd- and Er-rich domains by a thin shell heavily
doped with only Yb.[6]. Such layers transmit the energy absorbed by Nd dopants to
the upconverting Er dopants via rapid energy migration through the Yb sublattice.
To maximize Nd-Yb and Er-Yb energy transfer, the Nd- and Er-containing shells are
also heavily doped with Yb. Many of the GNN-optimized structures, particularly ones
with fewer layers, are reminiscent of the 3-layered heterostructure refined by Zhong et
al.[6] and others.[37] Nd-rich domains are located in outer shells to maximize absorp-
tion by a larger number (volume) of the sensitizers. Meanwhile, an Er-rich core is
used to promote upconversion by concentrating absorbed energy into a smaller volume
and smaller number of Er activators. The fact that gradient-based optimization of the
hetero-GNN surrogate model can rapidly learn design rules that have been developed
over decades of UCNP research suggests its potential to discover even more complex
and functional nanostructures.

In addition to validating established domain knowledge, the extrapolated results
from hetero-GNN optimization provide the opportunity to understand the behavior
of complex UCNPs with a greater number of shells than can be readily synthesized
or simulated. For example, a major unanswered question is the optimal number of
layers for a UCNP, e.g., are more layers better? The optimization matrix in Figure
5a suggests that for smaller particles (below 10 nm radius), moving beyond 2-3 layers
does not substantially improve the brightness, most likely because the shell thicknesses
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would be thinner than characteristic energy transfer distances. However, larger UCNP
heterostructures (r ¿10 nm) do see benefit from complex many-shell architectures, with
the brightest 14- and 15-nm UCNPs having 7 and 10-shells, respectively. These many-
shelled structures also suggest novel strategies to enhance upconversion efficiency. The
most striking characteristic of the optimized 12-, 14-, and 15-nm UCNPs (Fig. 5b.ii-iv)
is their interleaving of multiple layers of Nd- and Er-rich shells. Rather than converging
on one large layer of Nd sensitizer, the optimized 12-nm UCNP sandwiches a layer of
Nd sensitizer between two layers of Er activator (with the appropriate Yb buffer layers,
as in Figure 5b.ii), while the brightest 15-nm UCNP exhibits the inverse arrangement
(Figure 5b.iv). This sandwich shell arrangement allows energy transfer to occur from
two sizes, maximizing the number of donors or acceptors within a given distance while
minimizing concentration quenching in those outer shells. Curiously, the 14- and 15-
nm-radius UCNPs also exhibit motifs in which two Nd-rich shells are separated by
an intermediate shell of less concentrated Nd. It is unclear what advantage this motif
provides. It is possible that UCNPs may be relatively insensitive to variations near
their core (where this motif is observed) since the fraction of dopants is relatively
small compared to those in outer shells. This argument may also explain the curious
dearth of dopants in the core of the 15-nm UCNP. All of these intriguing structural
design motif predictions must be verified and investigated more thoroughly through
future experiments (preferably with the aid of precision automated synthesis[39]) and
mechanistic analysis of energy transfer pathways from kMC simulations[30] that the
hetero-GNN cannot report on.

In a particle utilizing all of these strategies, we find a 6.5x increase in Ivis−UV , as
compared to the brightest nanoparticle in the training set. Even within the feature
distribution, the optimization identifies a particle which utilizes these design rules to
achieve a 2x increase in emission intensity as compared to the brightest particle in the
training set. These results illustrate that, even within a training distibution but espe-
cially far OOD, optimization with a differentiable hetero-GNN can rapidly discover
new structures with properties that exceed historical training data and identify novel
heterostructure design rules.

Discussion

In order to assess the accuracy of our model prediction during optimization, particu-
larly in the far OOD region, we performed explicit kMC simulations. Particularly for
the largest particles, these simulations were extremely expensive, and we terminated
many simulations early (after 20%-80% of the requested kMC steps had run) to reduce
cost. Overall, the validating kMC simulations took >120,000 CPU-hours on AMD
EPYC 7763 and Intel Xeon Gold 6330 CPUs, and individual simulations could take
dozens of weeks. All optimizations using our trained hetero-GNN took ≈ 2,000 GPU-
hours on NVIDIA A100 GPUs. Because optimal particles often emerged early during
the optimization process, this GPU-hour figure could probably be reduced by improv-
ing our optimization procedure. Coupled with the fact that the kMC simulations could
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not be directly used for gradient-based optimization, as they are not inherently dif-
ferentiable, this indicates the massive acceleration in nanomaterial design that can be
achieved using DL.

While we have here focused on UCNPs, we believe that the heterogeneous
graph representation that we have described and implemented could be suitable
to predict heterostructure-dependent properties in other multi-layered nanoma-
terials. Possible applications include engineering the nanophotonic properties of
plasmonic[7, 10] and dielectric nanoparticles,[8] the catalytic properties of polyele-
mental heterostructures,[48] the optoelectronic properties of complex semiconductor
nanoparticle heterostructures,[11] the layer-by-layer assembly of nanoparticles for drug
delivery,[49] multilayered magnetic nanospheres,[12] and multilayer graphene sheets for
diverse energy and mechanical applications.[50] We also note that, given a DL model
which can predict multiple properties controlled by heterostructure, our approach
could allow for structural optimization while maximizing or minimizing multiple
properties simultaneously.

Conclusion

Inverse chemical and materials design often requires identifying optimal structures
in vast search spaces. DL can dramatically accelerate the optimization and design
process, but applications of DL are limited by available data and appropriate repre-
sentations. In this work, we presented SUNSET, a large dataset of emission spectra
for core-shell upconverting nanoparticles simulated using explicit kinetic Monte Carlo
simulations. To leverage SUNSET for UCNP design, we developed a new heteroge-
neous graph representation for nanomaterial heterostructures, which we used to train
a heterogeneous graph neural network (GNN). We found that this heterogeneous GNN
achieved superior in-distribution (ID) and out-of-distribution (OOD) performance
compared to existing representations, including vastly higher accuracy compared with
a more traditional GNN using a homogeneous representation. Data augmentation,
achieved by artificially partitioning UCNP layers, allowed the heterogeneous GNN to
approximately learn the subdivision invariance of UCNP emission, improving both ID
and OOD accuracy. Applying gradient-based optimization to the heterogeneous GNN
trained with augmented data, we identified new UCNP structures with more than
6.5x higher emission intensity than any UCNP in the training set. Optimized parti-
cles further elucidated both previously known and novel heterostructure design rules.
Our approach has the potential to considerably improve the rate at which we discover
new functional nanomaterials and could provide inspiration for applications of DL to
underexplored areas of chemistry and nanoscience.

Methods

We utilize kinetic Monte Carlo (KMC) to simulate the optical response of lanthanide-
doped nanoparticles. We use the high-performance C++ implementation, as
implemented in the RNMC software package.[31] Input generation is handled by
NanoParticleTools. We utilize Jobflow [51] and FireWorks [52] to build a workflow for
high-throughput kMC simulations, enabling the generation of datasets for machine
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learning. The effects of parasitic surface ligands are incorporated by including dopant
species which are acceptors, that effectively act as energy sinks.

SUNSET Dataset
We present the dataset titled Simulated Upconverting Nanoparticle Spectra for

Emissions Tuning (SUNSET). SUNSET consists of 5 sub-datasets which encompass a
range of nanoparticles. Evolution of the energy transfer network via kMC are carried
out to 10 ms.

Within each sub-dataset, we provide a training (and validation) split, an in-
distribution (ID) test split, and an out-of-distribution (OOD) test split. In SUNSET-2,
SUNSET-3, & SUNSET-4, the OOD test split also contains the particles with the top
5% and bottom 5% of core sizes. In the case of SUNSET-2 and SUNSET-3, where
many of the structures are obtained from Bayesian Optimization,[9] we also partition
the highest emitting particles into the OOD test splits. We set these particles aside to
ensure the model performance and therefore the optimization is not biased by these
pre-optimized configurations. SUNSET-1 comprises a wider parameter space and is
sampled in an unbiased manner, thus we do not follow the same splitting scheme.
Instead, we use the 4-shell nanoparticles as the OOD, rather than splitting based on
emissions.

• SUNSET-1 targets Er-Nd-Yb system, commonly used to achieve upconversion
with 800 nm light.[6, 47] It is comprised of multi-layered UCNPs with a core and
up to 4 shells, illustrated in Fig. 2b. Each nanoparticle consists of a doped core
with variable radius rcore ranging from 1 to 4 nm and doped shells with variable
thickness rshell ranging between 1 to 2.5 nm. The total UCNP size ranges between
1 to 13.6 nm.

• SUNSET-2 targets the Yb-Er system, a pair that is known to absorb at 980 nm and
emit UV light. It is comprised of core-shell UCNPs characterized by a total radius
of 4 nm. Each UCNP consists of a doped core with variable radii, rcore, ranging
from 0 to 3.4 nm, enclosed within a fixed outer shell radius of 3.4 nm. Additionally,
the UCNP features a cap shell containing surface species, which mimic the parasitic
nature of surface ligands in real UCNP systems. The total UCNP size remains
constant at 4 nm. Notably, certain particles lack a shell when rcore = 0 or 3.4 nm.

• SUNSET-3 also focuses on the Yb-Er system but excludes the presence of surface
species. Removing parasitic surface ligands mirrors the effect of growing an inert
external shell of undoped NaYF4 over the synthesized UCNP. With the external
shell excluded, the UCNP size is limited to 3.4 nm. Parameters, including the core
and shell sizes, dopants, and incident wavelength, remain identical.

• SUNSET-4 expands on SUNSET-2 by introducing Tm as a possible dopant. Like
Er, Tm can also facilitate UV emission. All other parameters in SUNSET-4 remain
identical to SUNSET-2. This dataset is intended to be used in conjunction with
SUNSET-2.

Model Training
A learning rate of 1e-3 is used, with a warm-up period of 10 epochs, where the

learning rate linearly increases from 1e-4 to 1e-3. During training, the Mean Squared
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Error (MSE) of the validation set is monitored and the learning rate is reduced on
plateau, with a patience of 50 epochs. Early stopping is triggered when the validation
MSE has not decreased for 200 epochs. Model performance is reported using the MSE
and NMSE, as shown in Equations 3-4 below:

MSE =
1

N

N∑
i=1

( ˆIvis−UV − Ivis−UV )
2 (3)

NMSE =

∑N
i=1 (

ˆIvis−UV − Ivis−UV )
2∑N

i=1 (Ivis−UV )2
(4)

where N is the number of UCNPs, ˆIvis−UV is the predicted UV emission intensity,
and Ivis−UV is the actual emission intensity.
Data Augmentation During training of the hetero-GNN model, we utilize data
augmentation as discussed in Section 5. We augment our training data on-the-fly
by subdividing the input UCNPs with additional random subdivisions each time an
UCNP is seen during training. Subdivided layers retain the dopant composition of
their original parent layer. For each UCNP input, we randomly subdivide each parent
layer into up to 3 child layers in the augmented UCNP. The subdivision is inserted
between 5-90% of the parent layer radii.
Optimization For a nanoparticle with N control volumes, we can define the following
bounds.

0 ≤ xi
n ≤ 1, for i ∈ [0 . . l] and n ∈ [0 . . z] (5)

0 < ri ≤ 1, for i ∈ [0 . . l] (6)

All dopant concentrations are within the closed interval [0, 1]. The fractional radii
is defined on an interval of [0, 1] as a fraction of a the maximum nanoparticle size,
rmax (which we identify a priori). This is necessary to keep on the same interval as
the concentration, since the trust region optimizer defines the same trust region for
all independent variables rfraction = rtrue/rmax

In addition, we define linear constraints that bound the total concentration within
each layer [0, 1] and restrict the thickness of each layer.

0 ≤
z∗n+z∑
j=z∗n

xj ≤ 1, for n ∈ [0 . . l − 1] (7)

cmin ≤ r0 ≤ cmax (8)

tmin ≤ rn+1 − rn ≤ tmax, for n ∈ [0 . . l − 1] (9)

We initialize random starting configuration within the distributions outlined for
each dataset as a starting point for optimization. We perform local optimization using
the trust region constrained optimization as implemented in scipy[43] with an initial
trust radius of 1.0. An initial constraint penalty of 1 × 103 was applied to strongly
penalize constraint violation, ensuring that concentrations stayed within the range
of [0, 1.0] and total radius within specification. The criterion used for termination
of local optimization is when the trust radius is less than 1 × 10−8 To search for a
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globally optimal particle, we repeatedly perturb the local minima and re-optimize the
nanoparticle heterostructure. To achieve this, we utilize the basinhopping functionality
of scipy with up to 500 steps, a step size of 0.15, and temperature value of 0.25.
Following global optimization, validation of the best identified candidate structures
are subjected to kMC simulations.

Supplementary Information

Additional information about data pre-processing; consideration of the effect of NaYF4

structure on simulation results; details for tabular, image, and homogeneous graph rep-
resentations for UCNPs; dataset biases and attempts to mitigate bias; optimal model
hyperparameters; additional details regarding model validation and optimization.
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