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Abstract

Hydrolysis is a fundamental family of chemical reactions where water facilitates the

cleavage of bonds. The process is ubiquitous in biological and chemical systems, ow-

ing to water’s remarkable versatility as a solvent. However, accurately predicting the

feasibility of hydrolysis through computational techniques is a di�cult task, as subtle

changes in reactant structure like heteroatom substitutions or neighboring functional

groups can influence the reaction outcome. Furthermore, hydrolysis is sensitive to the

pH of the aqueous medium, and the same reaction can have di↵erent reaction proper-

ties at di↵erent pH conditions. In this work, we have combined reaction templates and

high-throughput ab initio calculations to construct a diverse dataset of hydrolysis free

energies. The developed framework automatically identifies reaction centers, generates

hydrolysis products, and utilizes a trained Graph Neural Network(GNN) model to pre-

dict �G values for all potential hydrolysis reactions in a given molecule. The long-term

goal of the work is to develop a data-driven, computational tool for high-throughput

screening of pH-specific hydrolytic stability and the rapid prediction of reaction prod-

ucts, which can then be applied in a wide array of applications including chemical

recycling of polymers and ion-conducting membranes for clean energy generation and

storage.

1. Introduction

Water is one of the most essential molecules in chemistry, and yet, its unique properties

make it notoriously di�cult to characterize.1,2 The significant electronegativity di↵erences

between its oxygen and hydrogen atoms gives water a highly polar character that leads to

its recognition as the ”universal solvent”.3,4 Hydrolysis, or any reaction where water acts as

both a reactant and the solvent medium,5,6 are a prevalent class of reactions across chemistry.

Hydrolytic reactions are fundamental in biological7,8 and synthetic chemistry9,10 and play a

critical role in various essential scientific processes and significant technological applications.
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These range from processes, such as human digestion,8,11 where enzymes facilitate the hy-

drolytic breakdown of complex macronutrients into simpler compounds, to the degradation

of hazardous pollutants12 and alternative plastic chemistries.13

At the molecular level, hydrolysis begins when a water molecule attacks specific sites

on the reactant, initiating a sequence of bond cleavages and formations that lead to new

product(s). The mechanism and the associated rate of this reaction is closely tied to the pH of

the aqueous medium.14,15 The availability of protons (H+) or hydroxide (OH-) ions catalyzes

the formation of charged species, which have markedly di↵erent reactivities compared to

their neutral counterparts.13,16 These ionized reactants can exhibit enhanced solubility17,18

by forming stronger hydrogen bonds with the solvent. Additionally, water can act as catalyst,

facilitating ion transfer through the solvent and creating alternate reaction pathways with

lower energy barriers.19,20 As a result, acid/base-catalyzed hydrolysis of the same reactant

can have significantly di↵erent reaction rates compared to its neutral form, adding complexity

to the study of these reactions.

Given activation barriers (�G‡), the experimental rate of a hydrolysis reaction can be di-

rectly correlated via the Eyring equation.16,21,22 This involves determining computationally-

intensive and di�cult to find transition states for each individual reaction along the reaction

coordinate of the potential energy surface (PES).16,23,24 In contrast, within a specific reaction

family, the Bell-Evans-Polanyi principle (BEP)25 can o↵er a qualitative linear correlation

between the thermodynamic Gibbs Free Energy change (�Gr) and the kinetic parameter

�G‡.26–28 In cases where it holds, BEP allows us to leverage the thermochemistry of prod-

ucts and reactants (�Gr) to approximate trends in the kinetic rates of the reaction. This

opens the avenue for the development of a computational screening tool that can calculate

the respective �Gr’s of all potential hydrolysis pathways and screen molecules for a spe-

cific hydrolysis-related application. Despite this, quantifying this thermochemical quantity

(�Gr), with high accuracy still requires DFT calculations with large basis sets and refined

hybrid functionals at both reaction endpoints.29,30 Depending on the size of molecules, these
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calculations can take anywhere from several hours to days, particularly when employing

implicit solvent models31 to approximate the contributions from the reaction environment.

Since computational cost is a severe bottleneck for any form of high-throughput screen-

ing, deep learning approaches have emerged as promising alternatives in the past decade,

especially for tasks that involve the establishment of structure-to-property relationships.32,33

Recently, graph convolutions, which iteratively update node and edge features based on

connectivity and local environment, have proven to be extremely e↵ective in learning molec-

ular34,35 and reaction representations.36,37 Despite these methodological advances, the largest

roadblock to the development of an accurate model is typically the procurement of diverse,

representative data. For instance, the model developed by Grambow et al.33 was facilitated

by a dataset of 12,000 gas-phase reactions38 sampled from a subset of molecules in the GDB-

17 dataset.39 The bond dissociation energy (BDE) prediction framework developed by Wen

et al.40 was trained on a dataset of over 60,000 homolytic and heterolytic bond dissociation

reactions.41 In the realm of hydrolysis, no such comprehensive dataset currently exists.

In this work, we have attempted to address these shortcomings by first developing a

predictive framework based on reaction templates for di↵erent functional groups that can

automatically generate hydrolysis products for multiple pathways in any molecule. This

framework was then applied on a subset of the QM942 and the Alchemy43 databases to gener-

ate a database of over 65,000 hydrolysis reactions in an implicit aqueous solvation environ-

ment. For a given reactant molecule in the QM9 subset of the data, we have also generated

corresponding hydroxylated and protonated states of the reactant molecule to approximate

the e↵ects of extreme pH on the �Gr of hydrolysis. In addition, the neutral fold of the

dataset was developed with reactants from the QM9 database and later augmented with the

inclusion of larger reactant molecules from the Alchemy43 dataset. Combined, we provide

a new dataset that encompasses thermodynamic properties at di↵erent protonation states

along with an exploratory set of neutral-pH reactions for analysis and model development.

We then proceeded to use this comprehensive dataset to train a GNN model, which
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serves as a Hydrolysis Energy Predictor for Organic Molecules (HEPOM ). The model

leverages the di↵erence features of the atom (node), bond (edge) and global features between

the products and the reactants to directly predict the DFT-calculated �Gr . The global

reaction atom mapping allows the model to simultaneously track multiple bond dissociations

and formations. For the neutral dataset, the model achieved a low mean absolute error

(MAE) of 1.73 kcal/mol on a diverse holdout set of hydrolysis reactions and it was also

successful in outperforming a diverse set of benchmark models on the smaller and more

complex protonated and hydroxylated datasets.

2. Methods

2.1 Reaction Generation

As mentioned, we segmented the construction of our dataset into four main parts: three

derived from the QM9 dataset (representing neutral, protonated, and hydroxylated reactions)

and another, neutral reaction set from the Alchemy dataset. Hydrolyzable molecules in QM9

were screened using RDKit44 substructure matching for 20 standard, hydrolyzable functional

groups (Figure S3(b)). These templates were adapted from the work by Tebes-Stevens et

al.45 and integrated into an automated framework to predict reaction products. For instance,

in Figure 1, if an ester functional group is detected in a molecule, the reaction template would

yield a carboxylic acid and an alcohol as the respective hydrolysis products. Bond ‘a’ in the

reactant and bond ‘b’ in the water molecule is deleted with the RemoveBond functionality

in RDKit. Then, AddBond is used to create bonds ‘c’ and ‘d’ between atoms R1-W2 and

R2-W3 respectively, to yield a carboxylic acid and an alcohol as the respective products.

Similar reaction templates were implemented for all functional groups. Nitriles are treated

di↵erently: the reaction template yields amides and these can be further hydrolyzed into

an amine and a carboxylic acid (Figure S1 ). As a result, the intermediate products of

nitrile reactions serve as reactants in additional hydrolysis reactions, thereby augmenting
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the dataset. We generated a total of 16,264 hydrolysis reactions from the QM9 dataset. An

initial model was trained on 15,264 of these neutral reactions, while 1,000 reactions were

kept in an unseen holdout test set. The performance of this model is discussed in Section

3.2 (vide infra).

Figure 1: The set of bond cleavage and formations necessary to generate hydrolysis products
for a representative ester molecule.

The broader goal of this work is to develop a framework capable of enumerating potential

hydrolysis pathways for a wide range of molecules and predicting the thermodynamic free

energies of these pathways with high accuracy. With this in mind, we screened molecules

from the Alchemy dataset43 to generate reactions representing larger, more complex reac-

tions. The Alchemy dataset includes molecules with up to 14 heavy atoms, though we only

considered molecules with more than 10 heavy atoms. Neutral reactions generated from

the Alchemy dataset were added to the original dataset, resulting in a combined dataset of

41,006 reactions. Of these, 2,800 reactions were filtered out and added to the previous QM9

test set, creating an unseen holdout test set of 3,800 reactions ( 10% of the training set

size). In the following sections of the manuscript, we refer to the original dataset as the QM9

dataset and the expanded dataset as the QM9+Alchemy dataset.

While the data generated above are useful and novel, they are examples of hydrolysis in a

neutral reaction medium. However, hydrolysis is often catalyzed in an acidic or basic reaction

medium. For example, the hydrolysis rate of amides in a neutral medium is negligible,

even after heating, but amidic hydrolysis proceeds at a moderate rate in an acidic or basic

medium,46,47 forming carboxylic acid and an amine. Consequently, we explored whether this
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framework could extend to broader reaction conditions, potentially serving as a screening tool

for identifying molecules amenable to pH -specific hydrolysis. It is important to clarify that

under these reaction conditions, hydrolysis is initiated by the protonation or hydroxylation

of the reacting functional group,20,48 and the overall reaction rate is heavily influenced by the

pKa values of the functional groups.49,50 Generating a diverse dataset in high throughput for

acid- or base-catalyzed hydrolysis while accounting for pKa was intractable with our current

data generation scheme. Therefore, in this work, we focused our e↵orts on developing a

unified model that can predict the di↵erences in hydrolysis reaction-free energies for the

same functional group under di↵erent pH conditions. The datasets generated for neutral or

basic pH assume that the reaction medium is at an extreme pH, i.e., if a functional group can

protonate or hydroxylate, it will. An alternative approach could involve applying a separate

ML model which predicts the pKa and identifies the most probable site for protonation or

hydroxylation at a specific pH ,51–53 but this is beyond the scope of the present study.

We separated extreme pH hydrolysis reactions into two reactions schemes. For an acidic

medium, the reacting functional group was assumed to be protonated at the most electron-

rich atom site (e.g., the carbonyl oxygen in an ester or amide, or the nitrogen atom in a

nitrile). Similarly, for a basic pH, the relevant atom site in the functional group moiety was

hydroxylated. The acidic pH reaction was then executed between the protonated reactant

and two water molecules to maintain reaction stoichiometry. A representative example elu-

cidating the di↵erences in the hydrolysis reaction in acidic and neutral pH for a hydrolyzing

carbamate molecule is demonstrated in Figure S2 (a) and (b) of the SI. The extra water

molecule on the reactant side absorbs the proton to generate hydronium as one of the re-

action products. This approach circumvents the erroneous DFT-calculated energies of an

isolated proton in an implicit solvent medium.54 In the case of basic pH, the hydroxylated

reactant decomposes into the reaction products and a hydroxide ion. For these two datasets,

we focused on the QM9 molecules to limit the scope of computations, yielding a protonated

dataset of 11,323 reactions and a hydroxylated dataset of 16,732 reactions. Holdout test
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sets consistent with the neutral QM9 dataset were also extracted before model training. Since

the protonated reactants have a +1 charge and the hydroxylated reactants a -1 charge, we

will refer to these datasets as QM9+ and QM9�, respectively, in the subsequent sections.

2.2 Density-Functional Theory

QChem (version 5 or 6)55 was used to perform all the DFT calculations necessary to generate

the dataset. A specialized frequency-flattening optimization (FFOpt) workflow, originally

developed by Spotte-Smith et al.41 and currently implemented in atomate56 was used to

optimize the reactant and product structures to a true minima and also obtain thermochem-

ical quantities from the vibrational frequencies. The workflow iteratively performs successive

geometry optimizations and frequency calculations until there are either none or a single neg-

ligible negative frequency (<15 cm�1). This approach ensures that the optimized structure is

a true local minimum of the PES and not a saddle point. Moreover, the workflow parses the

necessary enthalpy and entropy terms from the QChem frequency output document for the free

energy calculations. For all the DFT calculations, we used the range-separated meta-GGA

hybrid functional, !B97M-V,57 which employs the VV10 dispersion correction,58 to improve

the non-covalent interactions. The def2-SVPD basis set59 was employed for the FFOpt work-

flow and the solvation e↵ects were implicitly accounted for with the water SMD solvent

model.17 The electronic energies of the optimized structures were refined with single-point

calculations using a larger def2-QZVPPD basis set.59

2.3 Model Architecture

The GNN model(Figure 2) is based on the previous BonDNet architecture.40 Here we briefly

discuss that architecture before highlighting our key departures from this model, and how

these di↵erences are key to working on each datasets presented.

The original algorithm uses gated graph convolutional (GatedGC) layers to propagate

initial node features within the graphs of individual species on both sides of a reaction.
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While GatedGC layers were used widely for structure-to-property models in chemistry and

materials science,60,61 BonDNet improved on these previous implementations by integrating

update and message-passing equations between global nodes and atom/bond type nodes;

this allows for the treatment of species of di↵erent charges and provides a framework to

include molecular-level features. Similar to other graph neural networks, more distant graph

relationships are treated by iteratively stacking several (typically 2-4 layers) GatedGC layers.

With updated species graphs, reaction graphs are built to hold reaction feature di↵erences -

atom and bond nodes are mapped to each other on both sides of a reaction and their features

are subtracted between corresponding atoms/bonds. Broken bonds are represented by zero

vectors in this scheme. Here BonDNet implemented a custom set2set62 global pooling feature

to map reaction graphs to fixed-sized vectors. These vectors are passed to fully-connected

layers for property prediction.

Our implementation extends global pooling by integrating a diverse set of global pooling

functions, including set2set,62 WeightedMeanPooling, Self-attention pooling,63 and

Mean Pooling. This diverse set of global pooling functions was intended to provide a more

comprehensive set of architectures across di↵erent dataset sizes, as previous benchmarks

showed set2set layers did not always outperform simpler MeanPooling approaches.64

In this implementation, the reaction mapping is altered from the original BonDNet to a

global reaction graph is constructed between the union set of bonds in products and reactants.

Originally, BonDNet used the product graph as a sca↵old and subtracted reactant features

from corresponding nodes in the product graph. This limited the model to only being

applicable for A ! B and A ! B + C type reactions with a single bond dissociation.

The previous framework could not interpret a hydrolysis reaction that involves at least two

elementary bond dissociation and formation reactions. Our algorithm builds a global reaction

graph by taking the union set of atoms and bonds in products and reactants and uses this

to build a graph structure with bonds from each side of reaction. This change allows for

an arbitrary number of bond changes, simultaneous breaking and forming, to be treated by
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Figure 2: GNN Architecture: The user inputs atom-mapped sets of reactants and products
(i) which undergo message-passing and update steps (ii). Using the user-specified mappings,
these updated features are mapped to a global reaction graph (iii) where functional groups
are the reaction site is added as a global feature (iv). Embeddings of bond and atom features
plus global features directly serve as the fixed-size vector used in a conventional dense neural
network for property prediction.
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the model (Figure 2). In addition, we are able to generalize our model to any number of

species on either side of the reaction - a feature critical for hydrolysis where no reaction can

fit BonDNet’s original implementation.

For the task of hydrolysis, where we have a consistent reaction framework, we incorpo-

rated a one-hot encoding of functional group identity45 into the global feature nodes. This

encoding provides a simple, yet e↵ective, descriptor that captures the reaction site of hy-

drolysis reactions alongside the more distant features generated by stacked message-passing

layers. This is a particularly attractive feature as sequential stacking of message-passing

layers rapidly increases compute time and can lead to problems such as oversmoothing.65,66

We also implemented a host of computational features such as multi-GPU compatibility, a

pytorch-lightning implementation, and added support for preprocesssing datasets.

3. Results and Discussion

3.1 Dataset Overview

As detailed in Section 2.1, our hydrolysis database, in its current form, comprises a total of

68,761 reactions, making it the largest molecular database for hydrolysis reactions. Among

these, the QM9+Alchemy dataset contains 41,006 reactions with reactant molecules in their

neutral state, while the remaining reactions are approximately evenly split between the QM9+

(protonated) and QM9� datasets, representing acidic and basic pH conditions, respectively.

The QM9+Alchemy dataset contains reactants with up to 12 heavy atoms. The distribution

of reactants based on the number of heavy elements is illustrated in Figure S3(a). For the

charged subsets, (QM9+ and QM9�), the reactants are restricted to a maximum of 9 heavy

atoms.

The number of hydrolyzed products varies depending on the reacting functional group,

with reactions yielding one, two, and, in some cases (e.g., urea and carbamates), three

products. Figure S3(b) visualizes the distribution of reactions based on the number of
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(a)

(b)

Figure 3: (a) Distribution of hydrolysis�Gr for the QM9 + Alchemy dataset. (b) Distribution
of hydrolysis �Gr for the QM9+ and QM9� datasets. The shift in the distribution becomes
clear when they are overlaid on the neutral �Gr for a subset of common reactants in the
three datasets
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products generated, and Figure S3(c) illustrates the distribution across di↵erent hydrolyzed

functional groups.

The hydrolysis �Gr distribution for the QM9 + Alchemy dataset is presented in Figure

3(a), where three peaks are observed: two distinct peaks in the endergonic region (�Gr > 0)

and one larger peak in the exergonic regime (�Gr < 0). Interestingly, the �Gr distribution

in Figure 3(a) is almost perfectly balanced with 20,547 reactions (50.11%) of the neutral

reactions falling within the endergonic regime.

Further analysis across di↵erent functional groups reveals some interesting insights. Dis-

tributions of epoxides, nitriles, and esters exhibit unimodal energy distributions, while cyclic

esters and cyclic amides (e.g., lactones and lactams) are bimodal. Sampling random lactone

and lactam reactions from the endergonic and exergonic regimes indicates that cyclic struc-

tures with strained rings have more favorable thermodynamic hydrolysis pathways, whereas

stable five-membered rings are more resistant to hydrolysis.67,68 The hydrolysis of amides

shows a distinctly bimodal nature, with both peaks centered in the endergonic regime, con-

sistent with the established trend of the thermodynamic infeasibility of amide hydrolysis in

a neutral reaction medium.69

The energy distribution for the protonated (QM9+) and hydroxylated (QM9�) datasets is

shown in Figure 3(b). It is evident that the �Gr distribution for hydroxylated reactants

shifts strongly toward the exergonic regime with greater than 70% of the reactions with a

thermodynamically exergonic hydrolytic pathway. The shift in the protonated dataset is

more subtle; however, when comparing the corresponding slices of the same reactions in the

neutral and protonated states (Figure 3(b)), it is clear that the distribution broadens after

protonation. Schematic S4 provides examples of hydrolysis for the same reactant in neutral,

protonated, and hydroxylated states, illustrating the wide range of DFT-calculated �Gr

values depending on the reactant’s state.

The following section will discuss our model’s performance on these di↵erent datasets

and how it compares to existing benchmarks.
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3.2 Model Performance - Neutral Dataset

In the initial round of model training, we utilized a dataset of hydrolysis reactions generated

exclusively from reactants extracted from the QM9 database. Despite a modest training set

of 15,264 reactions, the model performed well on the holdout test set of 1,000 reactions

across ten di↵erent functional groups. The Mean Absolute Error (MAE) was 2.44 kcal/mol.

Further details on the model’s performance with this smaller dataset are provided in Section

S4 of the SI.

Compared to other studies using molecular GNNs for property prediction,35,40,70 this

training dataset is relatively small. However, to the best of our knowledge, there are no

publicly available datasets specifically for hydrolysis reactions. To evaluate the impact of

additional training data, we curated 24,742 more reactions from the Alchemy database,

focusing on molecules with 10, 11, or 12 heavy atoms. This expansion also increased the

variety of hydrolyzing functional groups from 10 to 13. The expanded dataset was randomly

split into training and testing sets at roughly a 9:1 ratio, resulting in a holdout test set of

3,800 reactions. As shown in Figure 4(a), the model generalized e↵ectively on this test set,

with the MAE improving to 1.73 kcal/mol. The parity plot comparing model predictions

with DFT labels for the test set, shown in Figure 4(c), demonstrates a high coe�cient of

determination (R2) of 0.96. The distribution of deviations between model predictions and

DFT labels, illustrated in Figure 4(b), indicates that errors are closely centered around a

mean of zero kcal/mol. A detailed breakdown of these errors is provided in Table 1, show-

ing that only 53 out of 3,800 reactions had prediction errors exceeding 10 kcal/mol, thus

suggesting the model is suitable for screening purposes in this regime. Section S5 of the

SI includes examples of five such outlier reactions, which often feature unusual structures

with multiple strained rings, potentially contributing to the larger prediction errors. An-

other important aspect of evaluating the model’s applicability is its capability to classify the

overall thermodynamic feasibility of hydrolysis reactions as either exergonic or endergonic,

based on the DFT labels. The model correctly classifies 97.1% of the reactions in the test
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set, demonstrating its strong predictive power in distinguishing between these two thermo-

dynamic outcomes. Among the 117 misclassified reactions, a significant proportion (72) had

DFT-calculated �Gr values close to zero, highlighting the inherent di�culty of correctly

classifying these reactions.

Table 2 summarizes MAE statistics by functional group, revealing that no specific func-

tional group performs poorly. Notably, functional groups like lactones and lactams, which

exhibit a broader range of �Gr as shown in Figure 3(a), tend to have higher MAEs. The

higher MAE for imides may be attributed to their lower representation in the database (165

out of 41,006 reactions). However, interestingly, some functional groups with lower repre-

sentation, such as aliphatic fluoride (191) and cyclic carbonate (116), show lower MAEs

compared to the model average.

To assess our model’s performance relative to other reaction-property prediction algo-

rithms, we benchmarked it against several models. As detailed in Section 2.3, our model

is highly generalizable and capable of handling reactions with varying numbers of bond

changes—a feature not commonly found in reaction-property algorithms. This limitation

narrowed the range of models suitable for benchmarking. We tested a simple reactant-only

graph neural network with both atom and bond features, incorporating standard chemoin-

formatic features such as bond degree, element identity, atomic weight, ring inclusion, and

hybridization, as well as global features such as the number of atoms and bonds, molecular

weight, and one-hot encoding for the hydrolyzing functional group and charge. Addition-

ally, we evaluated an XGBoost model with Morgan Fingerprints and Chemprop,70 another

modern algorithm. Both the XGBoost and Chemprop models were tuned using Bayesian

optimization before final testing. The performance of these models is summarized in Table

3. Although Chemprop performs competitively (MAE: 2.25 kcal/mol vs. 1.73 kcal/mol), our

model outperforms all benchmarked models in terms of performance metrics on the holdout

test set. The performance of individual benchmark models is shown in Figure 5.
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Figure 4: Performance of HEPOM on the QM9 + Alchemy dataset. (a) �Gr predicted by
HEPOM versus DFT reference labels for the train and test sets; (b) histogram of the pre-
diction errors; (c) parity plot for the holdout test set segregated on the basis of hydrolyzed
functional group.

Table 1: Error distribution for the QM9+Alchemy holdout test set

Absolute Error
(kcal/mol)

Counts

< 2 2674

> 2 and < 5 893

> 5 and < 10 180

> 10 53

3.3 Model Embeddings - Neutral Dataset

Visualizing the feature space provides insight into the underlying patterns the model learns

during training. To analyze the learned representations for the trained model, we extracted

high-dimensional di↵erence feature vectors for each test set reaction before they are im-

plemented into the fully-connected layer for prediction. These vectors were then reduced

to a two-dimensional (2D) space using the Uniform Manifold Approximation and Projec-

tion (UMAP) method.71 The evolution of these 2D embeddings at di↵erent epochs during

training is shown in Figure S6 of the SI.

Initially, the embeddings are loosely clustered based on the functional groups of the hy-

drolyzing reactants, as expected. However, as training progresses, these clusters become

tighter and more defined, reflecting not only functional groups but also other underlying
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Figure 5: Parity plots for the performance of benchmark models on the holdout test of the
QM9 + Alchemy dataset. (a) Reactant only GNN - node features; (b) Reactant only GNN -
node + edge features; (c) XGBoost+Morgan fingerprints; (d) Chemprop70
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Table 2: MAE Statistics Based on Functional Group Hydrolyzed

Functional Group
MAE

(kcal/mol)

Lactone 2.198

Nitrile 1.433

Lactam 2.408

Imide 2.498

Nitrogen-Sulphur cleavage 2.176

Enamine 2.098

Amide 1.724

Cyclic Carbonate 1.252

Aliphatic Fluoride 1.022

Carboxylic Acid Ester 1.436

Carbamate 1.591

Urea 1.091

Epoxide 1.571

Overall Average 1.731

chemical similarities not explicitly known to the model. Figure 3 illustrates the final 2D rep-

resentations of the feature vectors for the test set, each tagged with its respective hydrolyzing

functional group. In addition to clustering by functional groups, a clear distinction emerges

between the embeddings of uni-product reactions and those of bi-product and tri-product

reactions. Uni-product reactions predominantly cluster on one side of the feature vector

space, while reactions yielding more than one product aggregate oppositely. For uni-product

reactions, the model forms a distinct cluster for cyclic functional groups (lactams, lactones,

and imides). This suggests that the model identifies additional common features beyond

functional group similarity, such as ring-opening during hydrolysis.

3.4 Model Performance: QM9+ and QM9� datasets

In Section 2.1, we discussed that in most practical scenarios, hydrolysis occurs in a reaction

medium where acidic or basic pH expedites the reaction. To extend the model’s applicabil-
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Table 3: Performance comparison against benchmark models for QM9+Alchemy dataset. We
also include a benchmark to trivially guessing the mean of the training set

Model Test MAE
(kcal/mol)

Test RMSE
(kcal/mol)

Mean 12.745 14.670

Reactant GNN(atom) 4.008 5.429

Reactant
GNN(atom+bond)

3.445 4.875

XGB + Morgan 2.448 3.705

Chemprop 2.257 3.528

HEPOM 1.731 2.674

ity, we generated the QM9+ and QM9� datasets, which include protonated and hydroxylated

reactants, respectively, to simulate extreme pH conditions. In the current work, the protona-

tion/hydroxylation was limited to only the QM9 molecules. Therefore these charged datasets

are considerably smaller than the neutral QM9 + Alchemy dataset. The trained models’

performance on the holdout test sets is shown in Figure 7 and summarized in Table 4.

As expected, the model’s performance on these datasets deteriorates, evidenced by the

lower coe�cient of determination (R2) and higher Mean Absolute Errors (MAEs) for both

the QM9+ and QM9� test sets. This performance decrease is particularly pronounced for the

hydroxylated model, which shows a relatively high MAE of 6.607 kcal/mol. However, it is

important to contextualize this result by noting that the range of �Gr values in this data

set is radically di↵erent, roughly spanning between -150 and 100 kcal / mol, compared to the

QM9 + Alchemy data sets (-40 to 40 kcal/mol). Notably, the MAE value also corresponds to

a strong R2 of 0.93.

Given these di↵erences, a fair comparison of model performance should be made against

relevant benchmarks rather than the neutral dataset. For these two datasets, we conducted

hyperparameter optimization using XGBoost and Chemprop models. As shown in Table 4,

our model outperforms the benchmarks on most metrics across this smaller and more com-

plex dataset. The exception is the mean absolute error (MAE) on the QM9� dataset, where
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Figure 6: UMAP Embeddings of the high-dimensional feature vectors representing the hy-
drolysis reactions into a two-dimensional space

Chemprop slightly outperforms HEPOM. Interestingly, despite the higher MAE for HEPOM

on the QM9� test set, it demonstrates greater robustness to outlier predictions, achieving a

lower root mean squared error (RMSE) compared to Chemprop. Furthermore, HEPOM

significantly outperforms Chemprop in correctly classifying the thermodynamic feasibility

(endergonic vs. exergonic) of reactions in the QM9� dataset, achieving a classification accu-

racy of 95.5% compared to Chemprop’s 84.8%. XGBoost exhibits the lowest classification

accuracy of 76.3% on the same test set. Additional details, including parity plots for the

benchmarks and MAE statistics by functional group for these holdout test sets, are provided

in Section S7 of the SI.

3.5 Combined Model Training

For the neutral dataset, we observed a significant improvement in model performance af-

ter incorporating additional data from the Alchemy dataset. Given this result, it can be
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Figure 7: Test Set Performance on models trained with the a.) QM9+ protonated and b.)
QM9� hydroxylated datasets.

Table 4: Performance comparison against benchmark models for QM9+ and QM9� datasets,
best model is bolded.

Model QM9+ Dataset QM9� Dataset
Test MAE
(kcal/mol)

Test RMSE
(kcal/mol)

Test MAE
(kcal/mol)

Test RMSE
(kcal/mol)

Mean 15.234 17.381 34.831 36.919

XGB + Morgan 5.394 8.195 8.687 14.375

Chemprop 6.275 8.864 5.373 9.682

HEPOM 4.282 6.213 6.607 9.326

expected that the performance of the protonated (QM9+) and hydroxylated (QM9�) models

would also benefit from more data. However, obtaining this would require another round

of computationally intensive data curation. Instead, we chose to augment the datasets by

combining all three datasets. We found that adding the neutral data significantly improved

the performance of both charged models, as shown in Figure 8.

Importantly, this improvement was not limited to our model but was also observed in

the benchmark models, particularly Chemprop. This suggests that the higher MAEs of the

QM9+ and QM9� models may be simply due to insu�cient data. However, as seen in Table 5,
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the most pronounced improvement was in our HEPOM model, which allowed it to surpass

the other benchmarks, including in the previously higher MAE for the QM9� test set (Table

4).

The parity plots in Figure 8(a) and the MAE split based on the state of the reactant,

compiled in Table 6, show that the improved model performance for the charged datasets

comes at the cost of a slightly higher MAE for the neutral test set. The corresponding parity

plots for the benchmark models and the MAE split based on functional groups are included

in Section S8 of the SI.

Table 5: Performance comparison against benchmark models the combined dataset, best
model is bolded.

Model Test MAE
(kcal/mol)

Test RMSE
(kcal/mol)

XGB + Morgan 9.998 14.756

Chemprop 4.920 8.562

HEPOM 3.054 4.281

Table 6: Our Model MAE stratified on the combined test set based on the reactant state.

State of Reactant

Mean
Absolute
Error

(kcal/mol)

Hydroxylated 4.057

Neutral 2.805

Protonated 2.838

4. Conclusion

In this work, we combined reaction templates and high-throughput DFT calculations to

generate a large and diverse dataset of �Gr values of hydrolytic pathways for molecules

screened from two popular molecular databases (QM9 and Alchemy). We then utilized this
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Figure 8: Test Set Performance on models trained with the combined dataset.

dataset to train a custom message-passing GNN on the di↵erence features of the products and

reactants, resulting in a model, capable of predicting the thermodynamic feasibility (�Gr) of

hydrolysis reactions. The model demonstrates remarkable accuracy on the neutral dataset of

hydrolysis reactions and outperforms benchmark models on smaller, more complex datasets

involving charged reactants, simulating extreme pH conditions. In addition, by combining

all three of our datasets, we find that our model is able to reasonably predict across all three

classes at once.

We believe this model to be valuable for high-throughput screening of molecules and au-

tomated chemical synthesis in various domains, including drug development, environmental

chemistry, and chemical deconstruction. The comprehensive dataset developed in this work

also serves as a critical resource for training other machine learning models. In terms of the

model, although this study focuses on hydrolysis, the model can be easily fine-tuned for any

arbitrary reaction datasets with available reactant and product molecule graphs.

Training and holdout test sets for all models are publicly accessible via Figshare, and de-

tailed information about the reactant and product molecules for the QM9 database is available
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via the MPCules72 interface, with future plans to integrate the Alchemy dataset reactants

and products as well. The code for training the model can be accessed at the GitHub repos-

itory.
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