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Abstract

Hydrolysis is a fundamental chemical reaction where water facilitates the cleav-
age of bonds in a reactant molecule. The process is ubiquitous in biological and
chemical systems, owing to water’s remarkable versatility as a solvent. However,
accurately predicting the feasibility of hydrolysis through computational tech-
niques is a difficult task, as subtle changes in reactant structure like heteroatom
substitutions or neighboring functional groups can influence the reaction outcome.
Furthermore, hydrolysis is sensitive to the pH of the aqueous medium, and the same
reaction can have fundamentally different reaction properties at different pH con-
ditions. In this work, we have combined reaction templates and high-throughput
ab initio calculations to construct a diverse dataset of hydrolysis free energies.
Subsequently, we use a Graph Neural Network (GNN) to predict the free energy
changes (∆G) for all hydrolytic pathways within a subset of the QM9 molecular
dataset. The framework automatically identifies reaction centers, generates hy-
drolysis products, and utilizes a trained GNN model to predict ∆G values for all
potential hydrolysis reactions in a given molecule. The long-term goal of the work
is to develop a data-driven, computational tool for high-throughput screening of
pH-specific hydrolytic stability and the rapid prediction of reaction products, which
can then be applied in a wide array of applications including chemical recycling of
polymers and ion-conducting membranes for clean energy generation and storage.
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1 Introduction

Water is arguably the most widely known compound, and yet, its deceptively simple structure fails
to underscore the complex relationships it forms with itself and with other compounds in reactions.
In the case of hydrolysis, which is ubiquitous in both biological[1, 2] and synthetic chemistry[3, 4],
water doubles as a reactant and solvent medium in which the reaction proceeds. At the molecular
level, hydrolysis is initiated by the attack of a water, hydronium, or hydroxide molecule on specific
sites in the reactant, triggering a sequence of bond cleavage and formations, which in turn, leads to
the formation of new product(s). The thermodynamic feasibility of this reaction is fundamentally tied
to the pH of the aqueous reaction medium [5, 6]. The availability of protons (H+) or hydroxide (OH– )
ions, generates charged species with different reactivities than the neutral molecule. Consequently,
acid or base-catalyzed hydrolysis [7, 8] of the same reactant can have prominently different reaction
rates than its neutral counterparts.

The Eyring equation provides a means to quantify experimental reaction rates by evaluating activation
barriers (∆G‡) through computational methods [9, 10]. However, this approach demands compu-
tationally intensive transition state (TS) calculations for each reaction along the complex potential
energy surface (PES) [11, 12]. In contrast, within a specific reaction family, the Bell-Evans-Polanyi
principle [13] can offer a qualitative linear correlation between the thermodynamic Gibbs Free
Energy change (∆Gr) and the kinetic parameter ∆G‡ [14, 15, 16]. Nevertheless, quantifying this
thermochemical quantity (∆Gr) with high accuracy still requires DFT calculations with large basis
sets and refined hybrid functionals for both reaction endpoints [17, 18]. Depending on the size of
the molecules, these calculations can take anywhere from several hours to days, particularly when
employing implicit solvent models to approximate the contributions from the reaction environment.

Since computational cost is a severe bottleneck for any form of high-throughput screening, deep
learning approaches have stepped up as promising alternatives in the past decade, especially for
tasks that involve the establishment of structure–property relationships [19, 20, 21]. Recently,
graph convolutions, which can iteratively update node and edge features based on connectivity
and local environment, have proven to be extremely effective in learning molecular [22, 23] and
reaction representations [24, 25]. Despite these methodological advances, the largest roadblock to
the development of an accurate model is typically the procurement of diverse, problem-representative
data. For instance, the model developed by Grambow et al. [21] was facilitated by a dataset of 12,000
gas-phase reactions [26] sampled from a subset of molecules in the GDB-17 dataset [27]. The bond
dissociation energy (BDE) prediction framework developed by Wen et al. [28] was trained on a
dataset of over 60,000 homolytic and heterolytic bond dissociation reactions [29]. In the realm of
hydrolysis, no such comprehensive dataset currently exists.

In this work, we first develop a predictive framework based on reaction templates for different
functional groups which can automatically generate products for multiple hydrolysis pathways in
any molecule. This framework was then applied to a subset of the QM9 database [30] to generate a
database of over 25,000 hydrolysis reactions in an implicit aqueous solvation environment. For a
subset of the database, both the neutral and protonated states of the reactant molecule were considered
to approximate hydrolysis in neutral and highly acidic pH conditions. Finally, we propose a GNN
model that utilizes the difference features of the atom, bond, and global features between the products
and the reactants to predict the DFT-calculated ∆Gr. The utilization of the global reaction atom
mapping enables the model to track multiple elementary bond dissociation and formations, resulting
in a mean absolute error (MAE) of 2.25 kcal mol−1 across a diverse holdout test set.

2 Methods

2.1 Reaction Generation

The hydrolyzable molecules in the QM9 database were screened through RDKit [31] substructure
matching of 20 prototypically hydrolyzable functional groups. We then adapted hydrolysis reaction
templates for the aforementioned groups from previous work by Tebes-Stevens et al. [32] into an
automated framework for determining reaction products. For instance, as shown in Schematic S1 of
the SI, if an ester functional group was detected in a molecule, the reaction template used would yield
a carboxylic acid and an alcohol as the respective hydrolysis products. Similar reaction templates
were implemented for all functional groups. As seen in Schematic S2 of the SI, the reaction template
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for nitriles yielded amides which can be further hydrolyzed into an amine and a carboxylic acid.
Therefore, the products of the nitrile reactions were redirected as reactants for separate hydrolysis
reactions to augment the dataset.

Hydrolysis reactions in neutral and strongly acidic pH were differentiated through two separate
reaction schemes. For neutral pH, we assumed separate hydrolysis reactions between each detected
functional group and one molecule of water. For an acidic medium, the reacting functional group
was assumed to be protonated at the most basic atom site. The acidic pH reaction was then executed
between the protonated reactant and two molecules of water to maintain reaction stoichiometry. A
representative example of these two reaction conditions for a hydrolyzing carbamate molecule has
been demonstrated in schematics S3 (a) and (b) of the SI. The extra water molecule on the reactant
side absorbs the proton to generate hydronium as one of the reaction products. This was done to
circumvent the erroneous DFT calculated energies of an isolated proton in an implicit solvent medium
[33].

2.2 Density-Functional Theory

The electronic structure code QChem (version 5 or 6) [34] was used to perform all the DFT calcu-
lations necessary to generate the dataset. A specialized frequency-flattening optimization (FFOpt)
workflow, originally developed by Spotte-Smith et al. [29] and currently implemented in atomate
[35] was used to optimize the reactant and product structures to a true minima and also obtain thermo-
chemical quantities from the vibrational frequencies. The workflow iteratively performs successive
geometry optimizations and frequency calculations until there are either none or a single negligible
negative frequency (<15 cm−1). This approach ensures that the optimized structure is a true local
minimum of the PES and not a saddle point. Moreover, the workflow can parse the enthalpy and
entropy from the QChem frequency output document, necessary for the free energy calculations. The
range-separated meta-GGA hybrid functional, ωB97M-V [36], which employs the vv10 dispersion
correction [37] for improving the non-covalent interactions was used for all the calculations. In case
of the geometry optimizations and frequency calculations (FFOpt workflow), the def2-SVPD basis
set [38] was used with the water SMD solvent model [39] to implicitly account for solvation effects.
The electronic energies of the optimized structures were refined with single-point calculations using
a larger def2-QZVPPD basis set [38].

2.3 Model Architecture

The GNN model, visually depicted in Figure S4 of the SI, is heavily based on the previously
published BonDNet architecture [28]. This algorithm uses gated graph convolutional (GatedGC)
layers to propagate starting node features within the graphs of individual species on both sides of a
reaction. While GatedGC layers have been used widely for structure–property models in chemistry
and materials science [40, 41], BonDNet improved on these previous implementations by integrating
update and message-passing equations between global nodes and atom/bond type nodes; this allows
for the treatment of species of different charges and provides a framework to include molecular-
level features. In order to propagate more distant graph relationships, several (typically 2-4 layers)
GatedGC layers were stacked. With updated species’ graphs, we constructed a reaction graph to hold
reaction feature differences. Atom and bond nodes were mapped to each other on both sides of a
reaction and features were subtracted from their corresponding node with zero-padding added to
represent broken bonds. In this implementation, the reaction mapping is altered from the original
BonDNet as a reaction graph is constructed between the union set of bonds in products and reactants.
The small change allows us to treat reactions where bonds both break and form as well as reactions
where several bonds change (Fig. S4). From here, a set2set [42] layer was applied to bond and atom
node types in the reaction difference graph to obtain a vectorized representation of the reaction that is
passed through a multilayer perceptron (MLP) for property prediction.

In order to leverage the consistent reaction framework of hydrolysis, we made one more fundamental
change to BonDNet: we incorporated a one-hot encoding of functional group identity into the global
feature nodes. This encoding provides a simple, yet effective, descriptor that captures the reaction
site of hydrolysis reactions alongside the more distant features generated by stacked message-passing
layers. Additionally, an expanded global feature serves as a "memory bank" to allow the rapid
propagation of messages between nodes further away from each other. This is a particularly attractive
feature as sequential stacking of message-passing layers, alternative to better propagate further
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relationships in the graph, rapidly increases compute time and can also lead to problems such as
oversmoothing [43, 44]. With this modification, we limit the number of graph message-passing layers
to 1-2 layers in our model architecture, and thus, drastically reduce the number of parameters.

3 Results and discussion

3.1 Dataset Overview

Figure 1: Distribution of ∆Gr for the compiled hydrolysis reactions.

In its current state, the dataset comprises a total of 25,599 reactions. Among these, 16,264 reactions
correspond to reactants with a net zero charge, representing neutral pH conditions. The remaining
reactions were generated from a subset of reactants from the neutral dataset. The hydrolyzable
functional groups of these reactants were protonated at the relevant atom site to get positively
charged reactants representing highly acidic pH conditions. The number of hydrolyzed products
varies depending on the specific reacting functional group, with reactions yielding 1, 2, and in
some instances (e.g., urea and carbamates), 3 products. The distribution of reactions based on the
number of products generated is visualized in Figure S5(a) of the SI and the distribution across
different hydrolyzed functional groups is also included in Figure S5(b). The ∆Gr distribution for
the neutral dataset is presented in Figure 1. Here, we observe a bimodal nature, characterized by
two distinct peaks in the endergonic and exergonic regimes. Approximately 54% (8837) of the
neutral reactions fall within the endergonic regime. Further analysis across different functional
groups reveals some interesting insights. Functional groups such as epoxides, nitriles, esters, and
amides exhibit a unimodal energy distribution. Conversely, cyclic esters and cyclic amides, such as
lactones and lactams, significantly contribute to the bimodal nature of the dataset. When we sample
random lactone and lactam reactions from the endergonic and exergonic regimes, it becomes clear
that cyclic structures with a strained ring structure have a more favorable hydrolysis pathway while
stable 5-membered rings are much more resistant to hydrolysis. The energy distribution for the
protonated dataset and its differences when compared to the neutral, is included in Figure S6 of the
SI. However, for the scope of this work, our discussion regarding model performance is limited to the
neutral dataset shown in Figure 1.

3.2 Overall Model Performance

To evaluate the model’s robustness, we tested it on an independent holdout test set (Figure 2(b)) of
hydrolysis reactions generated from QM9 molecules. This holdout set is comprised of 1000 reactions
spanning diverse hydrolyzable functional groups and ∆Gr values ranging between -40 kcal/mol to
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Figure 2: Overall Model Performance.

40 kcal/mol. Overall the predictions align accurately on the parity plot (y=x) with a high coefficient
of determination (R2) for both the validation and test sets. The model performance on the test set
demonstrates impressive generalizability, achieving an R² of 0.92 and a Mean Absolute Error (MAE)
of 2.25 kcal/mol compared to the DFT-calculated values (Figure 2(a)). The classification accuracy
for the model correctly classifying reactions as endergonic vs. exergonic was also 95.3

3.3 Model Embeddings

Figure 3: UMAP embedding of the reac-
tion features

To investigate the model-learned representations
of the hydrolysis reactions, we reduced the high-
dimensional difference feature vectors for each
hydrolysis reaction into a two-dimensional (2D)
space using the uniform manifold approximation
and projection (UMAP) method [45]. Figure 3
displays the 2D representations of the feature
vectors for the test set, each tagged with its re-
spective hydrolyzing functional group. A few
interesting insights emerge from the visual pat-
terns of the embeddings. As expected, the fea-
ture vectors for the hydrolysis reactions of sim-
ilar functional groups cluster together. Specif-
ically, in the case of lactones and lactams, we
observe two separated clusters and we hypoth-
esize that these are the distinct endothermic
and exothermic reactions. This implies that the
model also learns to distinguish separate sub-
classes for the same functional group. Further-
more, the uni-product reactions are all clustered
to the left of the feature vector space while the
reactions which yield more than one product
aggregate on the right of the dataset.

4 Conclusion

Utilizing a combination of reaction templates, high-throughput DFT calculations, and graph neural
networks, we have developed a predictive model capable of assessing the thermodynamic feasibility
of hydrolysis reactions. Our current focus is on expanding the model’s predictive capabilities to
encompass acidic and basic pH conditions, which could prove invaluable in high-throughput screening
of molecules and automated chemical synthesis for pH-dependent applications. The dataset will be
publicly accessible and the code can be accessed at https://github.com/santi921/bondnet.
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